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ABSTRACT

MEASUREMENT AND COMPUTATIONAL MODELING

OF THE MECHANICAL PROPERTIES OF PARALLEL

STRAND LUMBER

SEPTEMBER 2008

RUSSELL WINANS

BS, UNIVERSITY OF MASSACHUSETTS AMHERST

M.S.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sanjay R. Arwade

Wood products tend to have a very large variability resulting in over design of

engineered products. A relatively new structural composite wood material, Parallel

Strand Lumber (PSL) has been introduced with the expectation to reduce the inher-

ent biological variation wood products tend to have between specimens and species.

A probabilistic approach is being taken to model effective properties, strain, and

strength of PSL. Biological variation of grain angle, effective properties, biological

defects such as voids, strand dimensions, and constitutive species composing each

PSL member were taken into account. Methods will be used to verify experimental

results for the ultimate stress or maximum stress, modulus of elasticity, lengthwise

variability, and stress-strain behavior of Parallel Strand Lumber made from southern

yellow pine. Experimental compression data is measured from 64 A specimens with

the dimensions 1.10 in x 1.10 in x 3.25 in and 162 B specimens with the dimensions

v
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1.55 in x 1.55 in x 5.00 in. This data yields compression modulus of elasticity values

of 1840 ksi with a standard deviation of 300 ksi for the A specimens and 1860 ksi with

a standard deviation of 400 ksi for the B specimens. The ultimate stress at failure

of the A specimens is 7.71 ksi with a standard deviation of 1.09 ksi and the ultimate

stress at failure of the B specimens is 8.97 ksi with a standard deviation of 1.02 ksi.

Experimental bending data is measured from 1 A specimen with the dimensions 5.25

in x 5.25 in x 192 in and 9 B specimens with the dimensions 1.55 in x 1.55 in x 96 in.

These experiments yield edgewise modulus of elasticity values in bending of 1775 ksi

with a standard deviation of 25 ksi for the A specimen and 1648 ksi with a standard

deviation of 150 ksi for the B specimens.

vi
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CHAPTER 1

INTRODUCTION

Parallel Strand Lumber (PSL) is a structural composite lumber that is made by

bonding together long, thin, narrow strips of wood with Phenyl-Formaldehyde in a

press to form a non-homogeneous composite of wood strands from one or multiple

species of wood. This structural wood product is commonly used in commercial and

industrial applications such as truss members, joists, columns, and beams. Parallel

Strand Lumber is considered to be an economical structural material because it uses

wood fiber scraps from plywood panel production which would otherwise be discarded

as waste. The mixture creates a structural composite with material properties which

are heterogeneous, random, and vary spatially, which differs significantly from solid

wood lumber.

1.0.1 Goals

The goals of this research project are (1) determine experimentally how the cross-

sectional modulus of elasticity in bending and compression as well as the ultimate

compressive strength varies spatially along the length of Parallel Strand Lumber, (2)

develop probability models for the material properties, mechanics of the mesostruc-

ture, and other accompanying variables, (3) develop computational models from the

experimental data collected which will be used to create probabilistic characteriza-

tions of the spatially varying effective properties in both bending and compression

applications, and (4) use the computational and experimental data to perform ad-

ditional parameter studies such as the effect of the grain angle distribution on the

modulus of elasticity.
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1.1 Literature Review

The measurement and characterization of the spatially varying stiffness and strength

properties in Parallel Strand Lumber is important for the continued adoption of new

innovative materials for structural applications. Strength-based code design of wood

structures uses a probabilistic analysis of the likelihood of failure of a structural sys-

tem to determine load and resistance factors [8]. Calculation of the probability of

failure relies on computational models or experiments of how the member will per-

form under a given load combination. These models must include probabilistic models

of the material properties. This paper describes two probabilistic modeling methods

for the bending modulus of elasticity and the compression modulus of elasticity and

ultimate strength. Modeling of wood products tends to be very difficult because of the

inherent biological variation in wood where material properties vary spatially within

a member and between members.

This variability is well documented in the Wood Handbook which has a collection

of experiment data on most common wood species, where typical coefficient of varia-

tions for the modulus of elasticity and failure strength are given as 20% [8]. The data

given are point statistics of the effective properties of solid wood with no estimations

of the spatial variation of these properties. Lam et al. [10] characterized the spatial

correlation of the tensile strength of nominal 38x89 mm No. 2 Spruce-Pine Fir lum-

ber. Results are that the tensile strength at a distance greater than 1.83 meters apart

along the length can be considered statistically independent and uncorrelated. In a

continuation of this work, Lam et al. [11] used the tensile strength profile results from

their previous work and a moving average process to account for spatial correlation

of the within member tensile strengths. Good agreement is found between model

predictions and test results. These tests are performed on dimension lumber made

from Spruce-Pine-Fir, which is also used in the manufacturing process of PSL which

provide a useful insights for the starting point of computational models. Two signifi-
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cant additions are added to ideas presented by Lam et al., which are, that the present

model accounts for both variation within a member and between members, and also,

the model quantitatively describes how bending tests distort the true modulus pro-

cess because the bending tests effectively average the material properties between the

testing span.

There are few well defined mesostructure models for Parallel Strand Lumber or

other structural composites. Bejo and Lang [3] use a computer model to simulate

nominal cross-sections of dimensions 75x140 mm for Parallel Strand Lumber and

45x90 mm for Laminated Veneer Lumber (LVL). Probability functions are used to

randomize the geometric features (type of wood, grain angle, etc) of the composites

and one thousand simulations are run. These results are compared to experimental

data at different load orientations. It is found that the pure axial load orientation

showed excellent agreement with test results and overall good agreement to experi-

mental data is shown. Although the agreement of this model is excellent, the model

assumes that modulus of elasticity values along the length of cross-section are con-

stant where typically these values are only spatially correlated approximately 50 in

along the cross-section. Three dimensional considerations in the current model allow

for the consideration of these spatial variations of the effective properties in Parallel

Strand Lumber. Hu and Wang [9] reported experimental and computational data on

veneer-overlaid particleboard composites which define the mechanics model’s modulus

of elasticity dependency on the grain angle. Hu and Wang [9] use a similar approach

as the one presented here by using orthotropic elastic equations to derive expressions

for the length-wise effective modulus of elasticity, which yield exact results to one

another.

Having defined a model for the mesostructure material the next goal was to iden-

tify an approach for the mechanics of Parallel Strand Lumber. Clouston and Lam

[5][6][4] present modeling procedures for wood composite such as Laminated Veneer
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Lumber and Parallel Strand Lumber. Stochastic-based material properties are used

to develop a nonlinear finite element model where each element uses Tsai-Wu (an

anisotropic failure criteria) to model strength characteristics. Key advances to mod-

eling are the addition of length dimensions to the model which allows investigation

of spatial variability.

This research begins with a description of material and mechanics models used.

Next, bending and compression experimental data are presented and analyzed. Com-

putational models then yield estimates of the modulus of elasticity, strength, and

spatial variation along the length of a given cross-sectional size and member length.

These computational models, once validated, are then used to present results on en-

semble and other interesting statistics of the spatial variability of different member

sizes.
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CHAPTER 2

PROBLEM STATEMENT

2.1 Mesostructure Model Overview

The goal of the mesostructure model is to take a real section of Parallel Strand

Lumber and simplify it by idealizing how the structure is composed, which is shown

in Figure 2.1.

2.1.1 Assumptions and Idealizations

To effectively model the geometry of Parallel Strand Lumber several idealizations

and assumptions are used. It is assumed that all of the strands, shown in Figure 2.1,

are parallel to one another and perpendicular to the cross-section dimensions. This

neglects the randomly oriented geometry of most strands and assumes that all of the

surfaces of each strand are fully bonded to any adjacent strand. This also assumes

the cross-section is free of voids which is not typical for Parallel Strand Lumber.

The Parallel Strand Lumber member cross-section is assumed to be rectangular,

which is often typical for wood products. Each cross-section is composed of many

strands, with the exact number depending on the size of the strands and the cross-

section. These assumptions and idealizations are shown in Figure 2.1.

2.2 Material Model

2.2.1 Material Stiffness Properties

Each strand is modeled as an orthotropic material. The stress-strain relation-

ships can be determined from twelve independent elastic constants: three modulus
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Figure 2.1. Actual and idealized Parallel Strand Lumber cross-sections.

of elasticity values Ex, Ey, Ez; three independent Possion ratios νxy, νxz, νyz (this

is the result of symmetry of the modulus of elasticity and the Poisson ratio where

the relationship between Ey and Ex can be expressed as νyx/Ey=νxy/Ex); and three

shear modulus values Gxy, Gxz, Gyz. A standard Cartesian coordinate system is used

with the three principle axis parallel to the height, width, and depth of the member.

A second (x′, y′, z′) coordinate system is used to model a strand’s grain orientation.

The orthotropic stress strain relationship using the described coordinate system

is defined as
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2.2.2 Material Strength Properties

For wood materials, the failure criteria typically used to describe a material’s

failure envelope are Tsai-Hill or Tsai-Wu [6]. The Tsai-Hill failure criterion for a

particular stress state is described as

((G + H)(σicos(θ)2)2 + (F + H)(σisin(θ)2)2 − 2Hσicos(θ)2σisin(θ)2

+2N(σicos(θ)σisin(θ))2 < 1 (2.2)

with

F =
1

2
(− 1

F 2
x

+
1

F 2
y

+
1

F 2
z

) (2.3)

G =
1

2
(

1

F 2
x

− 1

F 2
y

+
1

F 2
z

) (2.4)

H =
1

2
(

1

F 2
x

+
1

F 2
y

− 1

F 2
z

) (2.5)

L =
1

2Syz

(2.6)

M =
1

2Sxz

(2.7)

N =
1

2Sxy

(2.8)

θ = strand’s grain angle (2.9)

σi = uni-axial stress in strand i (2.10)

In the above expression the maximum allowable uni-axial stress in one of the

principle directions are noted as Fx, Fy, Fz. The maximum allowable shearing stress

in two of the principle planes are denoted as Sxy, Syz, and Sxz.
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2.3 Deterministic and Random Parameters

2.3.1 Deterministic Parameters

For each model the cross-sectional geometry of each strand is assumed to be

deterministic according to experimental measurements on actual cross-sections of

Parallel Strand Lumber. The width wi is determined to be 0.2 in and the depth

di is determined to be 0.5 in.

2.3.2 Random Parameters

Each strand has associated properties that are considered to be random variables.

These associated properties are the strand’s grain angle θi, nine independent elastic

constants Ex,i, Ey,i, Ez,i, νxy,i, νxz,i, νyz,i, Gxy,i, Gxz,i, Gyz,i, six independent plastic

constants Fx, Fy, Fz, Sxy, Syz, Sxz and length Li. All of the random variables are

assumed to be independent, which is not typical. Length-wise variability of the

modulus of elasticity and strength within a strand is not considered.

The grain angle of each strand is assumed to be a random variable with the prob-

ability mass function shown in Figure 2.2 (Clouston, 2006). Each grain angle is taken

as a random variable with distinct values θ(k) with probabilities F (θ(k)):=P (X <

θi)=
∑

i:θi<θ p(θi). For two adjacent values θj−1 < θj the probability is equal to

P (θj)=F (θj)-F (θj−1). The generalized grain angle probability mass function has

the form fY (θ)=
∑

i P (Y = θ(i)δ(θ − θ(i)).

The simulation algorithm set θ = θk, where k = argmink(
∑k

i=1 p(θi < U)), where

U is a uniform random variable on the interval [0,1]. This yields the corresponding

grain angle for each strand from the generalized probability mass function. Each

grain angle was then considered to have the following property: P (θ = θ) = 0.5 and

P (θ = −θ) = 0.5 to make the probability mass function symmetric about θ=0.

The material elastic and strength constants of each strand are assumed to have an

expected value and coefficient of variation (COV) chosen to agree with experimental

8
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Figure 2.2. Grain angle probability mass distribution.

tests (Wood Handbook, 1994) for each type of wood species modeled. Using the

x-axis modulus of elasticity as an example, the elastic constants of each strand are

assumed to be Gaussian random variables with mean equal to the expected value of

the modulus of elasticity, and the standard deviation given by σ = COV × (E[Ex]).

This yields an expression for each of the elastic constants, where the modulus of

elasticity about the x-axis, is Ex = E[Ex]+W , where E[•] is the expectation operator

and W ∼ N(0, σ2). The material constants for the computational model are Ex =

1886 ksi, Ey = 119.3 ksi, Gxy = 128.4 ksi, νxy = 0.022, Fx = 8.31 ksi, Fy = 1.74 ksi,

and Sxy = 1.59 ksi.

The strand length is assumed to follow a beta distribution with parameters β = 2

and α = 5 on the interval from [2,8] ft and is given by Li = 2+6β, where β ∼ β(5, 2).

The choice of this distribution is made because the length of most strands tend

to be approximately 8 feet, and fewer strands are of shorter length, which is due

to the manufacturing process. The expected value of the length of a strand is ,

E[Li] = 2 + 6 α
α+β

.
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2.4 Specimen Types and Loads

2.4.1 Compression Test Setup

The compression test setup is staged to simulate a specimen which is fixed at one

end and with an applied displacement at the other. The cross-sectional dimensions

ds and ws and the length Ls are chosen in such a way as to ensure crushing failure

rather than buckling of the column under the given load P. A schematic of the com-

pression setup for the computational models can be seen in Figure 2.3 and the actual

experimental setup in Figure 2.4.

2.4.2 Bending Test Setup

The bending test setup is staged in such a way as to permit observation of the

bending modulus as a random process at a series of defined points along the length

of a specimen. To measure the elastic modulus of the Parallel Strand Lumber speci-

men bending tests were performed whose material models and solution methods are

outlined in Chapter 3. Each bending specimen has a total length denoted by LT , the

span between pin-roller support location is Lsup, and the spacing of tests along the

length of the specimen is Ls. The load P applied at time step dt is a user defined

constant. A schematic of the computational test setup can be seen in Figure 2.5 with

the actual test setup in Figure 2.6.
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Figure 2.3. Compression test setup schematic of an idealized cross-section with
length variation.

Figure 2.4. Experimental compression test setup of a 1.10 in x 1.10 in x 3.25 in
sample.
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Figure 2.5. Bending test setup schematic showing the passage of a test specimen
through two support locations.

Figure 2.6. Bending test setup of a 5.25 in x 5.25 in x 16 ft experimental sample.
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CHAPTER 3

COMPUTATIONAL MODELS

3.1 Overview

Computational models are used to provide the flexibility needed to do parameter

studies without physical experiments. These models will be validated from experi-

mental data and then used to observe parameters such as estimations of the ensemble

correlation length of the modulus of elasticity or ultimate stress in Parallel Strand

Lumber.

3.2 Stiffness Model

The goals of the stiffness model are to use an orthotropic mechanical model and

apply stress-strain transformations on the constitutive matrix to derive a relationship

between the applied uni-axial stress and strain in a cross-section of parallel strands.

This will then yield an estimate of the modulus of elasticity along the longitudinal

x’-axis.

3.2.1 Assumptions

Due to a cross-section of Parallel Strand Lumber being composed of many strands

which have varying grain angles a displacement controlled model is used. This uniform

displacement results in a constant strain approach which is appropriate because of

the assumption of perfect bonds between strands. Also, it is assumed that because

all strands are fully bonded to one another they act as a single body.
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3.2.2 Effective Modulus Derivation

The effective modulus of elasticity for a strand is defined as the material stiffness

with respect to the longitudinal x′-axis, which is defined as Ex′,strand = σx′/ǫx′ with

the coordinate system defined in Figure 3.1.

Figure 3.1. Grain angle coordinate system.

A orthotropic stress strain relationship is used to formulate an expression for the

effective modulus of elasticity for each strand.
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Stress and strain transformations are
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Imposing uni-axial stress to the stress transformation matrix yields
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. (3.4)

Next, stresses in the strand coordinate system are solved for in terms of the applied

stress σ0

σx =
σ0(1 + cos2θ)

2
(3.5)

σy = −σ0(−1 + cos2θ)

2
(3.6)

τxy =
σ0(sin2θ)

2
. (3.7)

From the transformed strain matrix the following relationships are taken and

trigonometric substitutions performed on ǫx, ǫy, and γxy from equation 3.1 to yield

an expression for the strain in the strand coordinate system.

ǫx′ = ǫxcos2θ + ǫysin
2θ + γxysinθcosθ. (3.8)

Solving for Ex′,strand and σx′ assuming σx′ = σ0 with all other stress states equal

to zero yields an equation for the effective modulus of elasticity of a strand
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Ex′,strand =
σx′

ǫx′

. (3.9)

Ex′strand =

4ExC

C + 2Ccos2θ − 2Dνyx + Dcos2θ + Ccos2θ + 2Dcos22θνyx + Dcos2θ + ExEy − CExcos22θ

(3.10)

with

C = EyGxy

D = ExGxy.

3.2.3 Linear Mixture Model Overview

Due to Parallel Strand Lumber being a composite, an average or effective modulus

of elasticity of the cross-section Ex′,section must be calculated to determine the global

behavior of the material. To calculate this, it is assumed that the strain in each strand

is equal to the applied strain, ǫi = ǫ0. The stress in each strand σi = ǫ0Ex′,i. The

force in each strand is then calculated as Pi = σiAi. The total force applied to the

cross-section is P =
∑

i Pi. The average stress in the cross-section is σ0 = P/
∑

i Ai.

The effective modulus of the cross-section or average of the strand moduli is then

calculated as Ex′,section = σ0/ǫ0.

3.3 Strength Model

The goals of the strength model are to use an appropriate failure criteria in con-

junction with the stiffness model described in the previous sections to yield estimates

of the stress-strain relationship in the post elastic region, and of the ultimate stress

at failure of the cross-section.
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3.3.1 Assumptions

The strength model assumes that there is constant strain throughout the cross-

section. Under the applied uni-axial stress it is assumed that σz = τxz = τyz = 0.

Wood products typically fail in two ways depending on the loading. In compression

the material is assumed to fail in a ductile way and in tension it is assumed that the

material fails in a brittle manner. Therefore, in compression the material’s behavior

post yield is assumed to be elastic-perfectly plastic and in tension the material’s

behavior is brittle having no additional load capacity upon reaching the failure surface.

3.3.2 Strength Model

By applying a strain ǫ0 the stress in strand i can be calculated as σi = ǫ0Ex′,i.

Using stress transformations in the three principal directions, the Tsai-Hill failure

criterion can be expressed as the following given a strand’s grain angle, its material

properties, and the known uni-axial stress in compression or tension σi

((G + H)(σicos(θ)2)2 + (F + H)(σisin(θ)2)2 − 2Hσicos(θ)2σisin(θ)2

+2N(σicos(θ)σisin(θ))2 < 1 (3.11)

The total stress within the cross-section is σ0 which is calculated as σ0=
P

i Pi

Atotal

where Pi = σiAi with the strength found using the parallel system model.

3.4 Finite Element Model

3.4.1 Overview of Finite Element Model

The finite element modeling program that is used for analysis is Adina v8.3.3 [1].

The total cross-sectional dimensions of each model are the depth d0, width w0, and

length L0. Each strand is assigned dimensions which are di, wi, and Li that are based

on user input. The meshing subdivision length in the principal x′, y′, and z′ directions
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for each model are determined from convergence studies. The convergence studies

will be shown in more detail in chapter 7 which has the results of the finite element

analysis. The elements used are rectangular three-dimensional 27 node quadratic

block elements.

3.4.2 Compression Finite Element Model

The compression and tension models assume that one end is fixed in the x′ di-

rection located where x′ = 0. Line constraints in the z′ and y′ directions prevent

translation and are located where y′ = 1
2
d0, z = 1

2
w0, and x′ = 0. A uniform time

varying displacement dt is applied to the y′ − z′ plane where x′ = L0.

The effective modulus of the cross-section is calculated as Ex
′
,section,t =

σx′,t

ǫx′,t
, where

the subscript t denotes a time step in the analysis. The strain is calculated as ǫx′,t =

L0−dt

L0

and σx′,t is calculated as σx′,t =
P

i Ri,t

Atotal
where Ri,t are the reaction forces on the

y′−z plane where x′ = L0 at time step t. An example of a compression finite element

model is shown in Figure 3.2.

3.4.3 Bending Finite Element Model

The bending model assumes the beam setup is that of a simply supported beam

with a midpoint load. The fixities to provide a simply supported condition are applied

at x′ = L0 and x′ = 0 along the z-axis about the line y′ = 1
2
d0. The fixity of these

nodes along this line are fixed and prevent translation the x′ and y′-directions. An

example of a bending finite element model is shown in Figure 3.3.

3.5 Finite Difference Model

A finite difference solution is used to numerically calculate the mid-span deflec-

tion of a simply supported beam with a midpoint load and variable modulus of elas-

ticity. The displacement is a function of the effective modulus of elasticity Ex′,j

where there are n nodes on the interval [a, b] with j = 0, 1, ..., n − 1, the length
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Figure 3.2. An example of a compression finite element model. Boundary conditions
and displacement locations are shown at the ends of the model.

Figure 3.3. An example of a bending finite element model. Boundary conditions
are shown at the ends of the model with a applied load in the center of the beam.
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of the span Lspanab, which is equal to the distance between the support locations a

and b in the x′-direction, the cross-sectional dimensions w0 and d0, and the load P

(δ = f(Ex′,j, w0, d0, Lspanab, P )).

A second order finite difference on the beam equation is used, which is

E(x)Iv
′′

= M(x) (3.12)
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CHAPTER 4

EXPERIMENTS

4.1 Outline and Goals

Compression and Bending tests are performed on Parallel Strand Lumber made

from southern yellow pine. These experimental tests are used to investigate the spatial

variation of the modulus of elasticity and the ultimate stress in compression. Uni-

axial compression tests are performed on two sample sizes 1.55 in x 1.55 in x 5 in

and 1.10 in x 1.10 in x 3.25 in specimens which yields estimations of the modulus of

elasticity and ultimate stress. Three point bending experiments were performed on

two specimen sizes 5.25 in x 5.25 in x 16 ft and 1.55 in x 1.55 in x 8 ft which yielded

estimations of the bending modulus of elasticity. The goals of these experiments were

to (1) gather more data on the effective properties of Parallel Strand Lumber, (2)

gather estimates of the spatial variability of the effective properties, and (3) use the

data to validate computational models.

4.2 Compression Tests

4.2.1 Overview of Compression Tests

Experimental tests were used to investigate the spatial variation of the compres-

sion modulus of elasticity and ultimate stress of Parallel Strand Lumber. These

experimental tests were performed on a two members of PSL made from southern

yellow pine where the first was 2.66 in x 5.25 in x 27 in in dimension which was

machined into eight members with the dimensions of 1.10 in x 1.10 in x 27 in. These

were then machined again into 64 1.10 in x 1.10 in x 3.25 in compression specimens,
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a schematic is shown in figure 4.1. The second round of compression testing was

performed on samples from a member of dimensions 5.25 in x 5.25 in x 16 ft. This

member was machined into nine 1.55 in x 1.55 in x 8 ft specimens then machined

again into 162 1.55 in x 1.55 in x 5 in compression specimens, a schematic is shown

in figure 4.2. These sizes are chosen in accordance to ASTM standards [2]. The

experimental testing consisted of a series of compression tests to failure, which ob-

served the modulus of elasticity and ultimate stress as a random process along the

length of the member. From these experiments the mean, variance, and lengthwise

auto-correlation of the compression modulus of elasticity and ultimate stress could

be estimated. A formulation for the scaled auto-covariance function used is defined

as

ρ(i, j) =
(Ŷeff,i − E[Ŷeff,i])(Ŷeff,i+j − E[Ŷeff,i+j])

σ2
Ŷeff

(4.1)

where E[•] is the expectation operator, and σ is the standard deviation of the

process Ŷeff in a single sample or an ensemble of samples. This formulation for the

auto-covariance assumes there are n sample observation locations located along the

length of a member for which i = 1, ..., n. Assuming that the sample spacings are

evenly distributed along the length there will be j available locations to estimate the

correlation with j defined as the number of samples away from i where j varies from

i, i + 1, ..., i + n − 1 with i + j < n.

The measurements obtained represent a piece-wise smoothed version of the true

modulus and strength fields due to averaging of material properties. The motivation

of these tests was to gain statistics of mean, variance, and correlation length which

will be used to validate computational models and case studies.
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Figure 4.1. Schematic for 64 specimens in group A.
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Figure 4.2. Schematic for 162 specimens in group B.
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4.2.2 Results of Compression Tests Round 1

To measure the compression elastic modulus of the Parallel Strand Lumber spec-

imens compression tests were performed with geometric limits defined by ASTM

standard [2] to ensure crushing dominated behavior. Two specimen groups were used

to capture size effects of the averaging of strands in a given cross-section. Where

specimen group A consists of samples with a 1.10 in x 1.10 in cross-section and group

B have a cross-section size of 1.55 in x 1.55 in. Specimens A1 through A8 are from

a section of lumber used in a previous bending to failure study and are made from

southern yellow pine. Specimens B1 through B9 are from a section of yellow pine

which were used previously in nondestructive bending tests up to 10% of their maxi-

mum capacity. A series of tests described below were performed on eight specimens

A1 through A8 and nine specimens B1 through B9. Compression tests were per-

formed on 64 specimens from group A and 162 specimens from group B to observe

the modulus of elasticity and ultimate stress as a random process along the length.

Each compression specimen had a total section length denoted by LT , width w, depth

d, and height h. Table 4.1 gives the numerical values of each of these parameters be-

low for specimen groups A and B.

Table 4.1. Compression test geometry and parameters.

Group w (in) d (in) h (in) LT (in)

A 1.10 1.10 3.25 27
B 1.55 1.55 5.00 96

Experimental tests were conducted in the Holdsworth Hall wood technology lab

at the University of Massachusetts, Amherst using a screw driven MTS 30,000 lbs

testing device operating in displacement control with a swivel head to ensure even load

distribution across the cross-section. These tests were conducted under displacement

control at an applied load rate of 0.01 in/min. This rate was used to ensure completion
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of each test between 5 and 15 minutes. Tests were performed past their ultimate stress

peaks until the load was reduced to approximately 80-90% of the peak load to ensure

there would be no damage to the measuring equipment. The strain in each strand

was measured from a cross-head displacement reading and an extensometer attached

to the edgewise side of the specimen. The extensometer was used to estimate a more

accurate stress-strain curve in the linear-elastic regime for each specimen.

The ultimate stress was assumed to be the peak stress in the stress-strain curve.

The modulus of elasticity was estimated from the linear-elastic range of the stress-

strain curve as the slope of the best fit line that portion of the graph. It should be

noted that for many of the samples there is significant seating of the load head into

the member so the region in which the slope is calculated is taken by eye from the

most linear portion of the stress-strain curve and solved in Matlab. The stress-strain

curves for both Groups A and B are shown below in Figures 4.3 and 4.4.

It should be noted that at approximately 70% of the pre-peak stress for several

of the specimens the strains look to be reversing, this is due to micro buckling and

damage on the outer strands which causes the readings of the extensometer attached

to the side of the compression specimen to yield false readings. The extensometer is

only accurate in the linear-elastic region when there is no damage to any of the strands

or the structure of the compression specimen. Damage was observed in three samples

from Group A and eight samples from Group B in early stages of the compression

tests. Modulus of elasticity data could not be readily obtained from these specimens

due to micro-buckling disrupting the extensometer readings. These samples were still

tested beyond their peak loads.

The overall behavior of the compression specimens are linear-elastic with little to

no strain hardening in the non linear regime which is typical for most wood mate-

rials. For some of the specimens micro buckling of individual strands was seen as
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well as delamination and cracking within the specimen. Most failures occurred by

delamination of several strands after significant crushing was observed.

The results of the testing are shown in Table 4.2. It is shown from the data that

the ultimate stress mean of group A is 7.71 ksi which is slightly lower than group B’s

mean which is 8.97 ksi. The lower mean stress in the A samples is likely due to a

size effect. This size effect is a results of the voids in a cross-section, which on a large

scale have little effect on the inherent properties, but for small cross-sections, such

as the ones tested in this research, the small voids affect the small specimens more,

which lowers the ultimate stress at failure.

The ensemble coefficient of variation of the ultimate stress for group A is 14%

which is slightly higher than group B, which is 11%. (For solid dimension lumber the

coefficient of variation for compression parallel to grain is 18% [8].) The difference in

A and B’s could be attributed to the difference in overall number of strands in each

cross-section which is greater in group B. This larger number of strands causes more

averaging of material properties to be observed. For the smaller cross-section there

are fewer strands which leads to less averaging of material properties within a given

cross-section.

Groups A and B had very similar mean values for the modulus of elasticity which

were 1840 ksi and 1860 ksi, respectively. For the modulus values the coefficient of

variation was less for the smaller specimens at a value of 300 ksi, compared to a value

of 400 ksi for the larger samples. This difference cannot be explained directly to any

material properties, but may be assumed to be experimental error or the difference

in the base woods used to manufacture each of the specimens because they were

obtained at different periods in time. Several modulus of elasticity readings could not

be obtained from three samples in group A and eight samples in group B because of

premature buckling and delamination of single strands caused errors in reading the

true strain. These tests were brought to peak loads, but no modulus of elasticity data
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Figure 4.3. Stress-strain curves for 64 specimens in group A.
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Figure 4.4. Stress-strain curves for 162 specimens in group B.
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could be estimated. Overall, the modulus of elasticity readings in the compression

specimens do not seem to be valid estimations of the compression modulus of elasticity

and its variation.

A comparison to other work on Southern Pine Parallel Strand Lumber report

members having an ultimate compression strength of 7.9 ksi for 1.5 in x 1.5 in x

7.0 in samples with a coefficient of variation of 0.87 ksi (COV 11.1%) [12]. These

values are comparable with both rounds of compression tests having means of 7.71

ksi and 8.97 ksi. The variation from the means are also similar where group A has a

coefficient of variation of 14% and group B has a coefficient of variation of 11%.

In the literature no compression modulus of elasticity could be obtained, but

Lee and Liu report that the edgewise and flat-wise bending modulus of elasticity for

Southern Pine PSL, which are 1720 and 1710 ksi, respectively [12]. The coefficient

of variation of the edgewise modulus of elasticity is 12.2% and the flat-wise having a

coefficient of variation of 24.0%. Group A and B samples were found to have a slightly

higher modulus of elasticity of 1840 ksi for Group A and 1860 ksi for Group B. It is

typical that the compression modulus of elasticity for most wood species is greater

in comparison to their respective bending modulus of elasticity. The coefficient of

variation for the Group A and Group B is 16% and 22%, respectively. These values

are similar to the coefficient of variation published [8]. By using published data to

compare to experimental results, the work presented in this chapter can be validated.

From this validation a more detailed investigation of the modulus of elasticity and

ultimate stress is performed to see how these material properties vary spatially within

a member.

It should be observed that the modulus of elasticity and ultimate stress processes

appear to be weakly stationary about their respective mean value, while in dimension

lumber these processes tend to behave as a non-stationary process [10][11]. Where a

weakly stationary process is a process where the mean and variation do not change

29



www.manaraa.com

Table 4.2. Compression test results.

ultimate stress compression modulus
Group mean (ksi) std. dev. (ksi) mean (ksi) std. dev. (ksi)

A1 7.48 0.44 2000 328
A2 6.48 0.95 1790 380
A3 7.81 0.37 1780 130
A4 7.44 0.42 1780 424
A5 8.36 0.49 1680 160
A6 9.76 0.32 1530 333
A7 7.46 0.48 2270 251
A8 6.88 0.90 1840 414

B1 10.3 0.55 2080 370
B2 10.1 0.61 1980 376
B3 8.77 0.68 1720 422
B4 9.87 0.48 1970 530
B5 9.16 0.58 1760 360
B6 8.17 0.57 1800 430
B7 8.62 0.51 1730 330
B8 8.31 0.34 2030 400
B9 7.46 0.50 1690 360

A ensemble 7.71 1.09 1840 300
B ensemble 8.97 1.02 1860 400

A means − 1.01 − −
A std. devs. 0.55 − 220 −

B means − 0.96 − −
B std. devs. 0.53 − 151 −
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with respect to position. This is shown in Figures 4.5 and 4.6 for Groups A and B

for the ultimates stress and in Figures 4.7 and 4.8 for modulus of elasticity.

To characterize the spatial variation of the compression modulus of elasticity and

ultimate stress a formulation for the scaled auto-covariance function is used, it is

defined as

ρ(i, j) =
(Ŷeff,i − E[Ŷeff,i])(Ŷeff,i+j − E[Ŷeff,i+j])

σ2
Ŷeff

(4.2)

where E[•] is the expectation operator, and σ is the standard deviation of the pro-

cess Ŷeff in a single sample or an ensemble of samples. This formulation for the

auto-covariance assumes there are n sample observation locations located along the

length of a member for which i = 1, ..., n. Assuming that the sample spacings are

evenly distributed along the length there will be j available locations to estimate the

correlation with j defined as the number of samples away from i where j varies from

i, i + 1, ..., i + n − 1 with i + j < n.

The scaled auto-covariance function of a weakly stationary process can be esti-

mated using either the ensemble estimates or a collection of single sample estimates of

a process. If the samples are long enough these two estimates of the auto-covariance

will converge to the same values. If the samples are not of significant length or if the

process is not ergodic, the sample estimations will be substantially different from the

ensemble estimate and exact scaled auto-covariance.

Figure 4.9 and Figure 4.10 below shows the sample estimates of the scaled auto-

covariance correlation length for the ultimate stress for specimen groups A and B

with the correlation length Lc of a specimen is defined as

Lc = argmaxρ(i, j) : |ρ(i, j)| > exp(−1). (4.3)
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Figure 4.5. Observations of the ultimate stress acting as a random process along
the length of Group A.
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Figure 4.6. Observations of the ultimate stress acting as a random process along
the length of Group B.
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Figure 4.7. Observations of the modulus of elasticity acting as a random process
along the length of Group A.
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Figure 4.8. Observations of the modulus of elasticity acting as a random process
along the length of Group B.
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The ensemble estimate of the scaled covariance for the ultimate stress is shown for

specimen group A and B in Figures 4.11 and 4.12, respectively, which also includes

a summary of the average of the single sample estimations. The ensemble estimate

of the auto-covariance for the ultimate stress process for southern yellow pine PSL

is shown to be much greater than 20 in for both groups A and B. Single specimen

estimations of group B shows some scatter of the correlation length with a very rapid

decay. For the single samples the scaled auto-covariance suggests no correlation of

strength for any samples at a separation distance of 5 in.

Figures 4.13 and 4.14 below show the sample estimates of the scaled auto-covariance

correlation length for the compression modulus of elasticity for specimen groups A

and B.

The ensemble estimate of the scaled auto-covariance of the compression modulus

of elasticity is shown for specimen groups A and B in Figures 4.15 and 4.16 which also

includes a summary of the average of the single sample estimations. The ensemble

estimate of the auto-covariance for the elastic modulus for southern yellow pine PSL

is shown to be 4 in. which is almost equivalent to the sample spacing. Single specimen

estimations of group A and B shows some scatter of the correlation length with a very

rapid decay similar to the ensemble auto-covariance. For the single samples the scaled

auto-covariance suggests no correlation of modulus of elasticity for any samples at a

separation distance greater than 4 in.

For specimen group B the auto-covariance estimates seem to have significantly less

scatter than group A which is evident by looking at the single sample estimates for the

different groups. Even with deviations of their auto-covariance functions both groups

yield similar sample and ensemble estimates of the auto-covariance function. For the

compression modulus of elasticity the sample and ensemble estimates converge to an
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Figure 4.9. Truncated auto-covariance sample estimates of the ultimate stress of
southern yellow pine Parallel Strand Lumber for group A.
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Figure 4.10. Truncated auto-covariance sample estimates of the ultimate stress of
southern yellow pine Parallel Strand Lumber for group B.
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Figure 4.11. Truncated auto-covariance sample estimate average and ensemble av-
erage of the ultimate stress of southern yellow pine Parallel Strand Lumber for group
A.
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Figure 4.12. Truncated auto-covariance sample estimate average and ensemble av-
erage of the ultimate stress of southern yellow pine Parallel Strand Lumber for group
B.
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Figure 4.13. Truncated auto-covariance sample estimate average and ensemble av-
erage of the compression modulus of elasticity of southern yellow pine Parallel Strand
Lumber for group A.
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Figure 4.14. Truncated auto-covariance sample estimate average and ensemble av-
erage of the compression modulus of elasticity of southern yellow pine Parallel Strand
Lumber for group B.
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estimate of approximately 4 in. This value does not seem to be a true signature of

Parallel Strand Lumber due to the large amount of noise in the compression moduli.

Cross-correlation of the modulus of elasticity for group A specimens is 0.24 and

0.12 for specimen group B. This suggests there is no correlation between the modulus

of elasticity and ultimate stress. This value may be under representative of an actual

cross-section due to the methods used to obtain estimates of the modulus of elasticity.

In the literature review there are no mention of any correlation between these two

effective properties in wood.

In small compression samples of Parallel Strand Lumber it is very hard to gather

valid estimates of the modulus of elasticity. The method of using an extensometer to

measure the strain is very susceptible to any small amount of damage that may occur

under loading. These small fluctuations of the extensometer influenced by damage

are very hard or unnoticeable when looking graphically at the stress-strain curve,

but will have a very large effect when calculating the modulus of elasticity. This

variability, which is introduced due to experimental error, causes the sample and

ensemble estimates to be very low and invalid. Also, both the small sample pool and

experimental error causes the single sample estimates of the correlation length to be

very low in both the modulus of elasticity and ultimate stress. Compression tests of

this scale seem to give very good estimations of the ultimate stress and its variation,

but does not yield very good estimations of the modulus of elasticity and its variation.

4.3 Bending Tests

4.3.1 Overview of Bending Tests

Experimental tests are used to investigate the spatial variation of the bending

modulus of Parallel Strand Lumber. Experimental tests are performed on a single

member of PSL which is 5.25 in x 5.25 in x 16 ft in dimensions and made from southern

yellow pine and on nine 1.55 in x 1.55 in x 8 ft members which are machined from the
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Figure 4.15. Truncated auto-covariance sample estimate average and ensemble av-
erage of the compression modulus of elasticity of southern yellow pine Parallel Strand
Lumber for group A.
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Figure 4.16. Truncated auto-covariance sample estimate average and ensemble av-
erage of the compression modulus of elasticity of southern yellow pine Parallel Strand
Lumber for group B.
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original 5.25 in x 5.25 in x 16 ft member. These experimental tests consisted of a series

of three point bending tests which observed the modulus of elasticity as a random

process along the length at a series of given points. From this, the mean, variance,

and lengthwise auto-correlation of the bending modulus of elasticity is estimated.

The measurements obtained represents a smoothed version of the true modulus

field due to averaging of material properties between the three point bending support

locations. The goals of these experiments are to estimate a smoothed mean, variance,

and auto-correlation of the bending modulus of elasticity.

4.3.2 Method and Results of Bending Tests

To measure the elastic modulus of the Parallel Strand Lumber specimens edgewise

bending tests are performed with geometric limits defined by ASTM standard D198-

05 to ensure bending dominated behavior. Two specimen groups are used to capture

size effects of the averaging of strands in a given cross-section. Specimen A1 is

the original section of lumber used in this study and is made from southern yellow

pine with a length of 16 ft. After a series of tests described below are performed,

nine specimens (B1,B2,...,B9) are machined from specimen A1. Experimental tests

are performed with a schematic shown in Figure 4.17, which intends to observe the

modulus of elasticity as a random process along the length. Each bending specimen

had a total length denoted by LT , the span between pin-roller support location is

Lsup, and the spacing of tests along the length of the specimen is Ls. The load P

applied at a time step dt is a user defined constant. Table 4.3 gives the numerical

values of each of these parameters below for specimen groups A and B.

Table 4.3. Bending test geometry and parameters.

Group w (in) LT (in) Ls (in) Lsup (in) Pmax (lbs)

A 5.25 192 6 96 500
B 1.55 96 3 15 300
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Figure 4.17. Bending test setup schematic showing the passage of a test specimen
through two support locations.

These experimental tests were conducted in the Holdsworth Hall wood technology

lab at the University of Massachusetts, Amherst using a MTS 30,000 lbs testing device

operating in displacement control. These tests were conducted under displacement

control at an applied load rate of 0.1 in/min. This rate was used to complete each

test between 30 seconds and 3 minutes. Maximum loads were prescribed according to

10% of a given cross-section’s size and bending span estimated maximum capacity to

ensure there would be no damage to the specimen. During testing the displacement

at the mid-span of the test member was measured by a linear variable displacement

transducer (LVDT) which was situated under the midpoint of the load application.

These tests were intended to measure the bending modulus of specimens groups

A and B and yield a series of mid-span displacements d(t) and applied loads P (t). At

each time increment the load can be expressed as

Pi(d,E(x), w), x ∈
(

xi −
LT

2
, xi +

LT

2

]

(4.4)

where xi, i = 1,2,...,n are positions along the length of the specimen where the load

is applied, E(x) is the averaged effective modulus of elasticity of the cross-section at
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position xi under the load Pi between the two supports which are located respective

to position xi at a = xi − Lsup

2
and b = xi + LT

2
.

These experiments related the deflection di, load Pi, and moment of inertia I[a,b]

to calculate the effective modulus of elasticity between support locations a and b.

These parameters are related by

di =

[
∫ ∫

m(xi, u)

E(x)I[a,b]

]

u=LT /2

(4.5)

where u is an arbitrary variable used for integration which is equal to 0 at one support

and Lsup at the other, m(pi, u) is the bending moment induced by the load p, and

where I[a,b] is the average moment of inertia between supports a and b which is equal

to I = w4/12. The elastic modulus of elasticity is not known and cannot be solved

uniquely, instead, it can be replaced by Êeff,i, the effective modulus of elasticity which

is defined as Êeff,i=E(x), x ∈
(

xi − LT

2
, xi + LT

2

]

. Using the deflection formula for a

beam under three point bending a solution can be obtained for the effective modulus

of elasticity, which is

Êeff,i =
Pi,tL

3
T

48di,tI[a,b]

(4.6)

where p and d are observed at the same location i, and at the same time t. The hat

on the effective or averaged modulus of elasticity between supports a and b denotes

experimental noise.

The testing procedure described above yields measurements of the cross-sectional

modulus of elasticity at 16 points along the length of specimen group A and 27 points

along the length of specimen group B. The raw load verses displacement curves can

be seen in Figures 4.18 and 4.19. It should be noted that it appears the group B

seems to be stiffer than group A, but that is not a representation of greater material
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stiffness, but rather of structural stiffness because of the shorter test span length

Lsup. By substituting the displacement d with 48dI/L3
sup the data is normalized and

allows the elastic modulus to be read directly from the slope of the curve. Also, the

nonlinear behavior at the lower loads is reflective of seating of the MTS test fixture

and not of actual response. To correct this the modulus of elasticity was measured

from the linear portion of each test curve manually between loads of 100 lbs and 250

lbs for group B and 100 and 400 lbs for group A.

The results of the testing is shown below in Table 4.4. It is shown from the data

that the mean of group A is slightly higher than group B. This higher modulus of

elasticity can be attributed to a size effect, where the much smaller 1.55 in x 1.55

in B samples have a greater influence from voids in the cross-section in comparison

to the A samples. Also, the standard deviation of sample A1 is significantly lower

than group B where the coefficient of variation for A1 is 1.4% and for group B is

9.1%. The amount of variation in a given cross-section is directly proportional to the

amount of constitutive strands. For the smaller cross-section there are significantly

fewer strands which leads to less averaging of material properties along the length.

The test spacing is much less in group B which also leads to less averaging of material

properties and a greater variability.

By comparing specimens in group B this data can show the combination of spec-

imen to specimen and within specimen variation. The total standard deviation of all

B specimens is 150 ksi and 25 ksi for specimen group A. The standard deviation of the

mean value of the effective modulus is 127 ksi for each of the 9 test specimens in group

B. This is a measurement of the specimen to specimen variability. The mean value of

the standard deviations taken within each sample of the 27 measurements in group B

is 98 ksi, which is the magnitude of within-specimen variability of the effective mod-

ulus. Based on the data 63% of the total variance can be attributed to specimen to

specimen variation and 37% to within specimen variation. The amount of variation

43



www.manaraa.com

0 0.02 0.04 0.06 0.08 0.1
0

100

200

300

400

500

600

d (in.)

P
 (

lb
s)

Figure 4.18. Raw load versus displacement curves
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Figure 4.19. Normalized load versus displacement curves
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Table 4.4. Bending test results.

Group mean (ksi) std. dev. (ksi)

A1 1775 25

B1 1762 110
B2 1826 130
B3 1628 100
B4 1738 82
B5 1673 95
B6 1547 76
B7 1713 84
B8 1493 110
B9 1454 90

B ensemble 1648 150

B means − 127
B std. devs. 98 −

is shown graphically below in Figure 4.20. From this figure it can be graphically seen

that there is both within member and specimen to specimen variation in all of group

B specimens. There is only one specimen in group A, but it is shown that there is

still within specimen variation and the variability in comparison to group B is much

less. It should be observed that these processes appear to be stationary about their

respective mean value, while in dimension lumber their modulus of elasticity behaves

as a non-stationary process [10][11].

To characterize the spatial variation of the bending modulus of elasticity a formu-

lation for the scaled auto-covariance function was used which is defined as

ρ(i, j) =
(Êeff,i − E[Êeff,i])(Êeff,i+j − E[Êeff,i+j])

σ2
Êeff

(4.7)

where E[•] is the expectation operator, and σ is the standard deviation of the

effective modulus of elasticity Êeff in a single sample or an ensemble of samples. This

formulation for the auto-covariance for Êeff assumes there are n sample observation

locations located along the length of a member for which i = 1, ..., n. Assuming that
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Figure 4.20. Observation of the bending modulus of elasticity as a random process
along the length.

the sample spacings are evenly distributed along the length there will be j available

locations to estimate the correlation with j defined as the number of samples away

from i where j varies from i, i + 1, ..., i + n − 1 with i + j < n.

The scaled auto-covariance function of a weakly stationary process can be esti-

mated using both the ensemble mean and single sample mean. If the samples are long

enough these two estimates of the auto-covariance will converse to the same values.

If the samples are not of significant length or the process is not ergodic, the sam-

ple estimations will be substantially different from the ensemble estimate and exact

scaled auto-covariance. Within the formulation for the auto-covariance it can be ob-

served that the decay of an ensemble estimate will be substantially less than a single

specimen estimate. This is due to the larger number of observations in an ensemble

estimate because the length of the samples in these experiments are relatively close

to their correlation lengths.

Figure 4.21 below shows the sample estimates of the scaled auto-covariance corre-

lation length for specimen groups A and B. The correlation length Lc of a specimen

is defined as
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Lc = argmaxρ(i, j) : |ρ(i, j)| > exp(−1). (4.8)

The ensemble estimate of the scaled covariance is shown for specimen group B in
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Figure 4.21. Truncated auto-covariance of southern yellow pine Parallel Strand
Lumber.

Figure 4.22 which also includes a summary of the average of the single sample estima-

tions. The ensemble estimate of the correlation length for the noisy elastic modulus

for southern yellow pine PSL is shown to be approximately 30 in. The abscissa is

truncated at a relatively short length due to a larger correlation distance. The sample

size is relatively small and the estimation error is dominant. Single specimen estima-

tions of group B show a very large scatter of the correlation length with a very rapid

decay. The ensemble estimate of these B samples show a much slower decay. Sample

A1 shows less decay than smaller specimens in group B, but no conclusions can be

made because of the availability of only one specimen.

These bending experiments provide many estimates of the modulus of elasticity

and its variation along the length with very good accuracy. The amount of experi-

mental error seems to average out and is limited by the simplicity of the three point
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Figure 4.22. Truncated auto-covariance of sample specimen means and ensemble
means of southern yellow pine Parallel Strand Lumber.

bending procedure. The bending experiments provided much better estimates of the

modulus of elasticity in comparison to the compression tests. This is because the tests

experienced little to no seating of the apparatus used and relatively low loads applied.

It is very difficult to observe ensemble characteristics of Parallel Strand Lumber due

to size limitations on the testing device. In order to achieve this observation much

longer samples must be used.

If accurate estimations of the correlation length can be made new procedures

in design can be established for testing methodologies for beams or more generally

members that experience a tensile stress where the correlation would be most impor-

tant. By having the correlation length, a weak-link concept can be applied to Parallel

Strand Lumber to determine the expected strength of any member with any length.
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CHAPTER 5

VALIDATION

5.1 Model Validation Overview

Chapters 2 and 3 describe the models for the mesostructural geometry of Parallel

Strand Lumber for the determination of the effective elastic modulus and the ultimate

strength of a PSL cross-section. These models are used to simulate Parallel Strand

Lumber response which is then compared to the experimental results in Chapter 4.

The purpose of these exercises is to validate the computational models.

The parameters described in Chapters 2 and 3 pertain to the geometry of the

cross-sections and are set to match that of the experimental tests in Chapter 4. These

parameters are listed below in Table 5.1 for the compression specimens and Table 5.2

for bending specimens. The dimensions of each strand cross-section was assumed to

have a width of 0.2 in and a depth of 0.5 in. Due to the deterministic strand cross-

section size, the simulated cross-sections differ slightly from the actual experimental

samples. For the compression specimens it was assumed that there were 12 strands in

each cross-section of specimen group A and 24 strands in specimen group B. For the

bending specimens it is assumed that there are 270 strands for simulation of specimen

group A and 24 strands for simulation for specimen group B. The difference in the

overall size due to the deterministic strand size for both specimen groups A and B in

bending and compression are less than 0.5%, which is negligible.

The random variables that are used in the computational models are the strand

length, elastic constants, plastic constants, and grain angle. These parameters are

described in more detail in Chapter 2. The strand length is modeled as a beta random
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Table 5.1. Compression test geometry and parameters.

Group w (in) d (in) h (in) LT (in)

A 1.10 1.10 3.25 27
B 1.55 1.55 5.00 96

Table 5.2. Bending test geometry and parameters.

Group w (in) h (in) LT (in) Lsup (in)

A 5.25 5.25 192 6
B 1.55 1.55 96 3

variable. The parameters of the beta distribution for strand length are chosen to be

α = 5 and β = 2 and that the interval of strand length is on the fixed interval from 2

ft to 8 ft. This interval was chosen because the strips used in Parallel Strand Lumber

are from Plywood scraps which tend to be approximately 8 ft in length. Strands may

be broken in the manufacturing process, so a minimum of 2 ft is set. The overall shape

of the probability density function can be seen in Figure 5.1. This shows a known bias

in the manufacturing process to strands near 8 ft in length. The elastic constants

are modeled as Gaussian random variables truncated at zero. Published values of

the elastic and strength constants and their coefficient of variations were used in the

simulations which are taken from the Wood Handbook (Forest Products Laboratory,

1999). The mean and coefficient of variations for these elastic and strength constants

are shown in Table 5.3. It should be noted that these are the full set of elastic and

strength constants that are used in the finite element simulations. For the simplified

computational models only Ex′ , Ey′ , Gxy, νxy, Fx, Fy, and Sxy are needed due to 2D

assumptions.

The grain angle is determined from a probability mass function generated from

published data [4]. The measurements of grain angles are reported [7] using an auto-

mated method for measuring grain angle from x-ray imaging. The models presented

here use a previously reported empirical probability mass function for the grain angle
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Figure 5.1. Beta random variable probability density function of the strand length.

Table 5.3. Elastic and strength constants and their coefficient of variations.

Constant mean coefficient of variation (%)

Ex′ 1886 ksi 20
Ey′ 119.3 ksi 20
Ez′ 203.0 ksi 20
Gxy 128.4 ksi 20
Gxz 153.9 ksi 20
Gyz 13.8 ksi 20
νxy 0.022 0
νxz 0.033 0
νyz 0.634 0
Fx 8.31 ksi 18
Fy 1.75 ksi 18
Fz 1.75 ksi 18
Sxy 1.60 ksi 0
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for Parallel Strand Lumber [4]. This distribution was obtained from manual measure-

ments of the grain angle by serial sectioning of a Parallel Strand Lumber specimen.

For the simulations presented here, the empirical distribution of the measurements

is assumed to be characteristic of all Parallel Strand Lumber specimens. It should

be noted that this distribution shown in Figure 5.2 is symmetric at zero. It can be

observed visually that the majority of the probability mass is concentrated in the in-

terval [0, 10] degrees. This indicates that the majority of the strands are well aligned

with the longitudinal axis. Also, there is considerable mass at a grain angle of 90 de-

grees. This grain angle of 90 degrees is used to represent a strand with a knot defect.

These defects significantly weaken the overall strength and also lower the modulus of

elasticity of the cross-section.
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Figure 5.2. Grain angle probability mass function (Clouston, 2006)

5.1.1 Compression Model Validation

Validation of the compression model is attempted by generating 1000 virtual in-

dependent samples of specimen groups A and B with equivalent dimensions and total

length to that of experimental tests. Virtual specimen samples were extracted from
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the full length virtual member at intervals equivalent to the test spacing. From these

samples the statistics of the unfiltered modulus and strength processes can be used

to yield an estimate of the filtered modulus and strength processes. The unfiltered

process is considered to be the true modulus or strength field with no averaging or

experimental error introduced. Due to the complexity of formulating a finite ele-

ment solution that evaluates a series of sections from very long member, just the

2-D simplified method was used to observe the modulus and strength processes along

the length. The finite element model was used to verify the mean and coefficient

of variation of the modulus of elasticity and ultimate strength. The finite element

solutions are also used to observe shear and bond interface interactions, which will

be explained in more detail in Chapter 7: Additional Studies. These interactions are

neglected using the simplified method which may have a significant influence on the

modulus of elasticity and ultimate stress. Only the simplified method results will be

validated in this chapter.

The statistics of the 1000 virtual independent samples are shown in Table 5.4 for

the ultimate strength and in Table 5.5 for the modulus of elasticity. These tables

also include a comparison of the virtual samples and the compression experimental

samples. The virtual simulations for the compressive strength slightly under predicts

that of the experimental data by 7.2% for specimen group A and 9% for specimen

group B. This difference can be attributed to a number of reasons, most notably the

strength properties that are being used. Values for the strength parameters used

in modeling were from large compression specimens, size effects would cause the

compression strength of a cross-section with the dimensions of a strand to be much

greater then what was used. The compressive strengths and elastic properties that

were used in simulations were that of southern yellow pine. During the manufacturing

process a pressure treatment is applied when the material is pressed together to form

the Parallel Strand Lumber billet. Also, the simulation assumes that the material
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is elastic-perfectly plastic. During the experiments there was some hardening upon

yield which could explain a 10-20% increase in the ultimate stress. The standard

deviations of the simulated samples were much lower than that of the experimental

data by approximately 82% in both specimen groups. The reason for this much lower

value is due to experimental error and mix mode failures. During the experimental

tests many of the samples experienced mix mode failures. A mix mode failure is

defined when crushing and buckling is observed. Several specimens also experienced

micro buckling of the outer strands. At loads approximately 60-70% of the ultimate

stress, strands would completely or partially delaminate from the specimen and then

proceed to buckle soon after. In a few of the other specimens splitting in the interior of

the cross-section was noticed and significant buckling of the two halves of the specimen

occurred. It should be noted that neglecting within strand variations decreases the

variability of these small samples dramatically due to the very short sample lengths

which can account for a large difference in the variability.

The sample estimates for the compression modulus of elasticity do not agree well

with the experimental data. The virtual tests under predict the modulus of elasticity

by 16% and 18% for specimen groups A and B respectively. Also, the modulus

of elasticity estimates under predict the standard deviation by 72% and 233%. This

significant disagreement between results is most likely due to the method of obtaining

the modulus of elasticity from experimental results. The modulus of elasticity was

taken from the stress-strain curves for each specimen. This methodology is very

subjective to where the slope was taken on the graph, which is a direct cause of

the large standard deviation for the experimental results. Also, additional variability

in the experimental data is likely due to mix mode laminate failure, where in solid

dimensioned wood, most failures will occur by crushing.

The next goal of this validation is to compare the auto-covariance of the mod-

ulus of elasticity and ultimate stress of specimen groups A and B to the simulated
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Table 5.4. Virtual simulation of the ultimate compressive strength for specimen
groups A and B with a comparison to the experimental data.

virtual A virtual B exp. A exp. B

ensemble mean (ksi) 7.19 7.18 7.71 8.97
std. dev. (ksi) 0.20 0.25 1.09 1.02

skewness -0.94 -0.04 0.10 0.05
kurtosis 14.3 2.98 2.35 2.54

sample mean of std. devs. (ksi) 0.65 0.46 1.01 0.96
std. dev. of means (ksi) 0.04 0.01 0.55 0.53

Table 5.5. Virtual simulation of the modulus of elasticity for specimen groups A
and B with a comparison to the experimental data.

virtual A virtual B exp. A exp. B

ensemble mean (ksi) 1580 1573 1840 1860
std. dev. (ksi) 174 120 300 400

sample mean of std. devs. (ksi) 55.5 66.3 − −
std. dev. of means (ksi) 5.60 1.57 220 151

data. Figures 5.3, 5.4, 5.5, and 5.6, show a graphical comparison of the ensem-

ble mean, sample mean, and standard deviation of the auto-covariance estimates at

different separation distances. Graphically it can be shown that the ensemble and

sample means of the experimental filtered modulus process and unfiltered simulated

modulus differ significantly. The compression ultimate stress agrees well with the

experimental data. The procedure in which the compression modulus of elasticity is

obtained introduces significant errors into the process along the length and it cannot

be easily compared to simulated data. These errors are introduced by seating of the

cross-head into the specimens and also small damage drastically effecting the strain

measurements by the extensometer. The ultimate stress for both specimen groups

A and B agree very well with simulated results. The short test spacing causes the

filtered and unfiltered processes to converge because there is little to no averaging

over such short distances in the process. In addition the small number of strands

yields little to no averaging as well. The estimations of the cross-correlation of the
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modulus of elasticity and ultimate stress are 0.58 for the A specimens and 0.62 for

the B specimens. This suggests there is some correlation which is not observed in

the experimental results. This cannot be readily explained, but may be from a strain

based approach using the modulus of elasticity values to calculate the strain at failure

of each strand.

Figures 5.3, 5.4, 5.5, and 5.6 show examples of the unfiltered and filtered modulus

of elasticity and ultimate stress processes. The samples of the unfiltered modulus

and ultimate stress are piecewise constant due to the assumption that there is no

within strand variation. This means, segments where there are no strands ending

have constant elastic properties, which is more easily shown in Figures 5.7 and 5.8

for the compression simulated data because these simulations have the least number

of strands in a cross-section.

For the simulated compression samples, the unfiltered and filtered processes are

very similar. For small cross-sections and short lengths, the amount of variation

within a cross-section is minimal due to the simplification that each strand has con-

stant properties along its entire length. Although there are very few strands within a

cross-section, the effect that ending and beginning strands with different properties

have, causes very large fluctuations in the standard deviation and the compression

modulus or peak stress. This is evident in the very large coefficient of variation of the

modulus of elasticity and ultimate stress in both simulated and experimental data.

The filtering of the effective properties has little affect on the modulus or ultimate

stress process along the length due to the specimen spacing being much less than

the assumed average strand length. It can also be assumed that the majority of the

specimens at a length of 5.0 in or 3.25 in have no strands ending within that spacing.

This is because the majority of the strands are on the interval from 2 to 8 ft in length

with the majority of them being closer to 8 ft in length. The maximum length tested

was 8 ft in length. This is observed in the experimental specimens as well.
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Figure 5.3. Observations of the compressive modulus of elasticity auto-covariance
as a function of separation distance of Group A for simulated and experimental data.
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Figure 5.4. Observations of the ultimate stress auto-covariance as a function of
separation distance of Group A for simulated and experimental data.
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Figure 5.5. Observations of the compressive modulus acting as a random process
along the length of Group B for the simulated and experimental data.
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Figure 5.6. Observations of the ultimate stress acting as a random process along
the length of Group B for the simulated and experimental data.
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Figure 5.7. Observations of the compressive modulus of elasticity acting as a moving
process along the length of Groups A and B for the simulated unfiltered and filtered
processes.
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Figure 5.8. Observations of the ultimate stress acting as a moving process along the
length of Groups A and B for the simulated unfiltered and filtered processes.
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5.1.2 Bending Model Validation

Validation of the bending model is attempted by generating 250 virtual indepen-

dent samples of specimen groups A and B. From these samples the statistics of the

unfiltered modulus process can be used to yield estimates of the filtered modulus

process. Finite element solutions were also performed which were used to verify and

give estimates of the mean and coefficient of variation of the modulus of elasticity and

ultimate stress. These results are explained in more detail in Chapter 7: Additional

Studies. Only the 2-D simplified method will be reported in this section.

The statistics of the 250 virtual independent samples are shown in Tables 5.6,

which includes a comparison of the virtual samples and the experimental samples.

The most direct comparison can be made between the samples of specimen group B.

In total there were 9 experimental B samples tested. The virtual tests under predict

the modulus of elasticity by 11% and under predicts the standard deviation by 38%.

For a material such as wood this amount of variation is normal, and the agreement

between the predicted and measured ensemble means are good. The variability of

the virtual samples being under predicted is excepted due to the omission of voids,

within strand variation, and also the size of voids considered in the model. Also,

experimental error will increase the variability, as well as, the method for extracting

the modulus of elasticity from the load-displacement relationships given by the load

cell and LVDT.

The sample estimates for group B agree with the experimental data in that the

mean of the standard deviations for the sample estimates are less than the ensem-

ble estimate of the standard deviation. For the virtual samples the sample standard

deviation is 81% of the ensemble standard deviation. For the experimental data the

sample standard deviation is 65% of the ensemble standard deviation. These simula-

tions yield similar results with the experimental data suggesting that the individual
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sample lengths are insufficiently long to capture the actual spatial variability of Par-

allel Strand Lumber.

For specimen group A the experimental pool size is too low to give a reasonable

comparison to simulated results. The mean value for specimen group B is equiva-

lent to that of the virtual A samples. The standard deviation agrees well with the

experimental value having a value 5% less than the virtual samples. The ensemble

statistics cannot be readily compared due to only one experimental data set available

for specimen group A.

For both the experimental and virtual samples the kurtosis and skewness show

that a Gaussian representation of the data is applicable.

Table 5.6. Virtual simulation of bending tests for specimen groups A and B with a
comparison to the experimental data.

virtual A virtual B exp. A exp. B

ensemble mean (ksi) 1569 1572 1775 1648
std. dev. (ksi) 26.3 94 25 150

skewness 0.017 0.16 − 0.038
kurtosis 2.50 3.17 − 2.80

sample mean of std. devs. (ksi) 36 116 − 127
std. dev. of means (ksi) 22.8 65 − 98

The next goal of this validation is to compare the modulus of elasticity of specimen

group B to the simulated data. Computational models are not validated using speci-

men A1 due to only one data set available. The bending modulus of elasticity process

is shown in Figure 5.9. The effect of filtering is more apparent due to more averaging

in the bending specimens then the compression specimens. Even with the filtering

effect, the relatively short test spacing causes the data to be in good agreement with

for ensemble and sample estimates.

Figure 5.10 show examples of the unfiltered and filtered process of the modulus

of elasticity for specimen groups A and B in bending. The filtering effect is most
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Figure 5.9. Observations of the bending modulus of elasticity auto-covariance as a
function of separation distance of Group B for the simulated and experimental data.
Simulated data with noise is not included in this figure.

evident in specimen groups A and B of the bending samples in Figure 5.10. The A

samples have an 8 ft span, which averages the properties over a much greater volume

of material then the smaller B samples which has a bending span of only 15 in. The

samples of the unfiltered modulus and ultimate stress are piecewise constant due to

the assumption that there is no within strand variation. This means, segments where

there are no strands ending have constant elastic properties, which is more easily

shown in Figures 5.7 and 5.8 for the compression simulated data. This is because

these simulations have the least number of strands in a cross-section and the shortest

model lengths.

Specimen group A of the bending modulus of elasticity process shows very small

piecewise segments due to the large number of strands in a given cross-section. Be-

cause of this there are a significant number of strands ending along the member which

cause rapid changes in the peaks in comparison to specimen group B of the bending

modulus of elasticity. Even though there are significant numbers of strands ending
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Figure 5.10. Observations of the bending modulus of elasticity acting as a moving
process along the length of Groups A and B for the simulated unfiltered and filtered
processes. Simulated data with noise is not included in this figure.

along the member these properties average out because of the large number of total

strands in a cross-section.

These figures give insight into how averaging can affect the modulus of elastic-

ity process. For the bending specimens of group B small test spacing results in the

averaging effect becoming negligible. This is evident with the unfiltered and filtered

processes being very similar. For specimen group A the very large span results in

significant averaging which causes the unfiltered and filtered processes to have dra-

matically different properties in both the standard deviation and also the shape of

the random process. Most peaks and noise in the data are smoothed out which

can lead to false interpretation of the actual properties along the length of a given

section. These results indicate that one should be very careful when determining

the spatial statistics of bending specimens as averaging may lead to inaccuracies. If

one is to determine these statistics they should use as short of a span as possible to

limit the averaging which will more closely represent the true spatial characteristics

of the bending modulus of elasticity. This span should also limit appreciable shear

deformations.
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5.1.3 Conclusion of Validation

The simulated data can be validated by the experimental results for the bending

modulus of elasticity and the ultimate stress. The effective properties and correlation

lengths are very similar between the simulated and experimental data with some under

prediction of the variation due to the neglect of within strand variability. For the

compression modulus of elasticity the validity of the experimental data is questionable

and hard to make any concluding remark whether the simulated data is also valid.

Using solid wood as a high end value for the coefficient of variation of the modulus

of elasticity which is 20% [8], values obtained for the coefficient of variation in the

experimental section were between 17-21%. For Parallel Strand Lumber the amount

of variation is much less due to the averaging of material properties, so, simulated

compression moduli having a coefficient of variation between 8-11% seems valid.
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CHAPTER 6

SIMULATION RESULTS

6.1 Simulation Overview

Having validated the computational model in the previous chapter, the simula-

tions of the bending modulus of elasticity, compression modulus of elasticity, and

ultimate stress were used to derive a probabilistic characterization of the filtered ran-

dom processes of the experimental data. A second set of simulations were performed

on specimens having the same cross-section dimensions as the ones used in Chapter

5: Validation, defined below in Tables 6.1 and 6.2, but with a much longer length as

to allow for capturing of the full decay of the auto covariance. 1000 A’ and 1000 B’

compression specimens and 250 A’ and 250 B’ bending specimens are generated and

analyzed using 2-D computational models. The new lengths are also shown below in

Tables 6.1 and 6.2.

Table 6.1. Compression simulation geometry and parameters. The values in the
parenthesis are the dimensions of the experimental tests.

Group w (in) d (in) h (in) LT (in) simulations num. strands

A 1.00(1.10) 1.00(1.10) 3.25(3.25) 720(27) 1000(8) 12(-)
B 1.50(1.55) 1.60(1.55) 5.00(5.00) 720(96) 1000(9) 24(-)

6.2 Compression Simulation Results

Tables 6.3 and 6.4 show the point statistics of the ultimate stress and compressive

modulus of elasticity. The unfiltered and filtered processes for the compression sam-

ples A’ and B’ yield nearly identical results. By observing the skewness and kurtosis
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Table 6.2. Bending simulation geometry and parameters.

Group w (in) h (in) LT (in) Lsup (in) simulations num. strands

A 5.00(5.25) 5.40(5.25) 600(192) 6(6) 250(1) 270(-)
B 1.50(1.55) 1.60(1.55) 600(96) 3(3) 250(9) 24(-)

of the data the specimens in both compression and bending appear to have a near

Gaussian distribution. By comparing the standard deviations it can be shown that

the increasing number of strands decreases the variability.

Both the E(x) modulus and S(x) ultimate stress processes are assumed to be

weakly stationary and ergodic. The statistics in Tables 6.3 and 6.4 give insight that

the marginal distribution of S(x) and E(x) is Gaussian. This model is appropriate

because the formulation of the effective modulus of elasticity and ultimate stress are

a summation of independent identically distributed random variables in compression.

By assuming the central limit theorem holds a Gaussian probabilistic model can be

used to represent the simulated data. It should be noted that this model can only be

applied to cross-sections having more than 15 strands as sections with fewer strands

than this tend be behave as a non-Gaussian distribution. Evidence of this is shown

in the simulation of 1000 cross-sections with 12 strands and a total length of 27 in.,

where the kurtosis was 13.6 for the modulus process and 14.3 for the strength process.

The skewness of these processes are -0.58 and -0.94, respectively, where a Gaussian

model would not be appropriate.

Figure 6.1 shows the scaled auto-covariance processes for specimen groups A’ of

the ultimate stress. The compression modulus of elasticity and B’ ultimate stress

processes are similar, but not shown, with a linear scaled auto-covariance to 0 and

then constant at a value approximately 0 at further increments of length.

It is interesting to compare the different correlation lengths which are defined as
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Lc = argmaxρ(i, j) : |ρ(i, j)| > exp(−1). (6.1)

The size of the cross-section and the amount of averaging present have a large effect

on the overall correlation length. For the compression specimens the unfiltered and

filtered processes have nearly identical correlation lengths. Slightly longer correlations

are noted for both the A’ and B’ specimen groups due to some averaging. The

ensemble and sample correlation lengths differ by approximately 10% in all cases. The

cross-correlation of both A’ and B’ specimen groups are 0.68 and 0.67, respectively.

This suggests there is some correlation between the strength and the modulus of

elasticity. This correlation between the strength and modulus of elasticity may be

a result from the calculation of the stress in each strand being calculated using the

modulus of elasticity of the strand.

Table 6.3. Point statistics of the filtered and unfiltered simulated ultimate stress
processes.

Statistic A’ unfiltered A’ filtered B’ unfiltered B’ filtered

mean (ksi) 7.17 7.13 7.17 7.13
std. dev. (ksi) 0.61 0.61 0.43 0.43

skewness -0.13 -0.12 -0.09 -0.08
kurtosis 2.59 2.58 2.65 2.64

corr. length ensemble (in) 55.8 56.3 55.3 55.8
corr. length sample (in) 50.3 50.7 49.7 50.0

6.3 Bending Simulation Results

Table 6.5 show the point statistics of the bending modulus of elasticity. Some

filtering can be seen in the B’ samples which is evident by a small reduction in the

standard deviation. Significant averaging can be seen for the A’ bending specimens.

This is due to the 8 ft span for the B’ where more averaging occurs in comparison
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Table 6.4. Point statistics of the filtered and unfiltered simulated compression mod-
ulus of elasticity processes.

Statistic A’ unfiltered A’ filtered B’ unfiltered B’ filtered

mean (ksi) 1572 1572 1571 1571
std. dev. (ksi) 159 157 111 110

skewness -0.13 -0.13 -0.08 -0.08
kurtosis 2.59 2.58 2.63 2.62

corr. length ensemble (in) 56.0 56.3 56.5 57.0
corr. length sample (in) 50.4 50.9 49.7 50.2
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Figure 6.1. Comparison of the unfiltered and filtered auto-covariance functions of
1000 simulated 1.55 in x 1.55 in x 720 in members.

to the smaller A’ span of 15 inches. By comparing the standard deviations it can be

shown that the increasing number of strands decreases the variability. The standard

deviation of the A’ samples is 32.1 ksi and the B’ samples have a standard deviation

of 112 ksi.

The E(x) modulus of elasticity process is assumed to be weakly stationary and

ergodic. The statistics in Table 6.5 give insight that the marginal distribution of

E(x) is Gaussian. It is interesting to then compare the correlation lengths which are

defined as
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Lc = argmaxρ(i, j) : |ρ(i, j)| > exp(−1). (6.2)

The size of the cross-section and the amount of averaging present have a large effect

on the overall correlation length. The filtering effect is noticed more in the bending

modulus of elasticity A’ and B’ specimen groups. The A’ samples have a difference in

the correlation length of 9.5 in which is significant. This is due to the large bending

span which causes many peak values to be averaged out. The B’ specimens, which are

significantly smaller in cross-section and have a shorter test span, have an unfiltered

correlation length 3 in smaller than the filtered correlation length. The ensemble and

sample correlation lengths differ by approximately 10% for the A’ and B’ samples.

Table 6.5. Point statistics of the filtered and unfiltered simulated bending modulus
of elasticity processes.

Statistic A’ unfiltered A’ filtered B’ unfiltered B’ filtered

mean (ksi) 1572 1572 1571 1570
std. dev. (ksi) 32.1 27.2 112 110

skewness -0.02 -0.02 -0.10 -0.09
kurtosis 2.62 2.44 2.60 2.57

corr. length ensemble (in) 56.5 66 57.0 60.0
corr. length sample (in) 48.5 58.0 49.2 51.8

6.4 Simulation Results Summary

Based upon the validation study and the further simulations of this chapter, many

important features about testing and simulation can be concluded. For typical ex-

periments, compression samples have a fairly small cross-section and short length.

For solid wood testing this is ideal because it makes testing fast and yields very ac-

curate results for both the modulus of elasticity and ultimate stress. For Parallel

Strand Lumber there are many drawbacks from having such a small cross-sectional
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size. This cross-sectional size causes many unwanted failure modes such as the de-

lamination of the outer strands. A nominally sized member, such as one used for a

column in a wood framing structure, the delamination of several strands will have

little effect on the shape of the stress-strain curve, the modulus of elasticity, and ulti-

mate stress. When there are only 12-24 strands within a cross-section the unwanted

failure of these strands can have a significant effect on the covariance, modulus of

elasticity, and ultimate stress. The only alternative to this testing is to have much

larger cross-sections, but this will put very high stresses on the testing machine or

surpass its capacity. One possible fix is to filter the data based on certain failure

modes, which would remove data that underwent a failure mode that would not be

characteristic of a typically sized member used in an engineering application. If full

scale members are used, the spatial correlation could not be easily obtained because

of the filtering effect which is not apparent in smaller compression specimens. From

the simulations based in this chapter it is easy to create a variety of easy to implement

sample generation techniques which will be presented in Chapter 7: Additional Stud-

ies. Models of significant length give good representations of the experimental data.

The overall agreement between the experimental tests and the simulated data is very

good. Initial models suggest that the length of the specimens are still too short to

capture the spatial correlation and much longer samples should be used. The covari-

ance of the experimental and simulated data differ significantly in compression. This

is mainly due to the small cross-sections and the neglect of within strand variation.

For the longer A’ and B’ simulations the within strand variation is very insignificant

in comparison to the length-wise variability. These specimens give a much better

representation of how the number of strands in a cross-section effect the variability

of the members.

For the bending experiments, researchers should be wary about the cross-sectional

size and test span used. Ideally the cross-section should be as small as possible to allow
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as short bending spans as possible without significant shear deformations. For large

cross-sections and bending spans the filtering causes the variability of the modulus of

elasticity to be much lower then what it actually is. This is most evident in the A’

bending specimens where the standard deviation is reduced by 12.5%.

Overall the experimental tests were too short to provide accurate correlation dis-

tances at long separation distances. By simulating A’ and B’ specimens of large

length it yields very accurate correlation lengths and statistics about Parallel Strand

Lumber. The compression and bending tests have converging ensemble and sample

estimates of the correlation length which are approximately 56 in.
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CHAPTER 7

ADDITIONAL PARAMETER STUDIES

7.1 Overview

The objective of these additional studies are to expand upon computational results

presented in in Chapter 5: Validation and Chapter 6: Results.

7.2 Stiffness and Strength Parameters

7.2.1 Study of the Modulus of Elasticity and Ultimate Stress versus the

Number of Strands and Cross-sectional Size

The cross-sectional size and number of strands have a direct effect on both the

probability model that can represent the data and variation of the modulus of elastic-

ity and ultimate stress. By generating cross-section cuts with an increasing number

of strands and performing an analysis of how the effective properties change, it is

possible to get a direct relationship between the number of strands and coefficient of

variation of the modulus of elasticity or ultimate stress.

For the modulus of elasticity, the number of strands in the simulations ranged from

one to 300. This range was chosen to capture the effect of the modulus of elasticity

on a broad range of cross-sections which includes sizes of the experimental cross-

sections. In total there are 1000 observations of the modulus of elasticity for each

number of strands from 1 to 300, where an illustration of these simulations are shown

in Figure 7.1. This figure limits the data set to better show the variability. When the

number of strands is between approximately 1 and 15 there is a significant increase

in the standard deviation. The distribution of moduli also become non-Gaussian as
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the Central Limit Theorem does not apply. As the amount of strands increases the

variability decreases which is shown in Figures 7.1 and 7.2 and the moduli behave as

a Gaussian distribution.

For a large number of strands, the standard deviation nearly converges to approx-

imately 0 ksi because the effect of one additional strand is negligible on the modulus

of elasticity. Figure 7.2 shows a representation of how the modulus of elasticity varies

with cross-section size. Figures 7.3, 7.4, 7.5, 7.6, 7.7, and 7.8 show the transforma-

tion of the modulus of elasticity observations into a Gaussian data set. As shown in

previous chapters the modulus of elasticity of the 1.10 x 1.10 in and 1.55 in x 1.55 in

cross-sections used in the experiments has much greater variability in comparison to

the larger 5.25 in x 5.25 in cross-section.

The relationship between the standard deviation σE and number of strands is

σE =
592.5 ksi√

ns

. (7.1)

The relationship between the standard deviation σE and the cross-sectional dimen-

sions for a fixed strand size is

σE =
711.8 ksi

nswd in2 . (7.2)

A similar set of simulations are performed to determine how the ultimate stress

varies with an increasing number of strands and cross-section size. The amount of

simulations is reduced to 100 for each number of strands and only brought out to a

total number of strands of 30. This interval and number of simulations are chosen

because these simulations takes significantly longer time to run than the modulus of

elasticity simulations. From Figures 7.9 and 7.10 it can be shown that the ultimate

stress has a similar decay in the variability of the ultimate stress with an increasing

cross-sectional size. The amount of variation is greatest when there are very few

strands in the model. The ultimate stress data has a slower decay of the variance
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Figure 7.1. As the number of strands are increased in a cross-section the variation
of the modulus of elasticity is reduced.
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Figure 7.2. The cross-sectional size is important in the determination of character-
istics of the modulus of elasticity and its variation.
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Figure 7.3. 1000 observations of the modulus of elasticity for cross-sections with 1
strand.
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Figure 7.4. 1000 observations of the modulus of elasticity for cross-sections with 5
strands.

75



www.manaraa.com

0 500 1000 1500 2000 2500 3000
0

20

40

60

80

100

120

modulus of elasticity (ksi)

fr
eq

ue
nc

y

Figure 7.5. 1000 observations of the modulus of elasticity for cross-sections with 10
strand.
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Figure 7.6. 1000 observations of the modulus of elasticity for cross-sections with 50
strands.
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Figure 7.7. 1000 observations of the modulus of elasticity for cross-sections with
150 strands.
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Figure 7.8. 1000 observations of the modulus of elasticity for cross-sections with
300 strands.
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in comparison to the modulus of elasticity data. This is due to both the elastic

and strength parameters being random. Also, the elastic and strength properties

are uncorrelated, which causes data of sections with very few strands to be non-

Gaussian because the Central Limit Theorem does not apply to sections of this size.

A relationship of the number of strands and standard deviation of the ultimate stress

are taken from cross-sections having greater then 15 strands which is

σF =
0.71 ksi√

ns

(7.3)
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Figure 7.9. As the number of strands are increased in a cross-section the variation
of the ultimate stress is reduced.

7.2.2 Study of Grain Angle distributions on the Modulus of Elasticity

To best understand the stiffness characteristics of Parallel Strand Lumber a grain

angle distribution must be defined in order to yield meaningful data of the mean and

variation of the modulus of elasticity process along the length of a given member.

A literature review provided insight into two grain angle distributions for Parallel

Strand Lumber.

78



www.manaraa.com

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

cross−section dimensions (in2)

ul
tim

at
e 

st
re

ss
 (

ks
i)

 

 

 

mean ultimate stress

std. ultimate stress

exp. x−sect sizes

Figure 7.10. The cross-sectional size is important in the determination of charac-
teristics of the ultimate stress and its variation.

Bejo and Lang [3] reported a truncated Gaussian distribution at ±15o which fit

both their experimental and simulated data. This grain angle distribution is shown

graphically in Figure 7.11. An important note is that this distribution neglects mis-

aligned strands and knots. These factors will be discussed more in depth below.

Clouston [4] reports a grain angle distribution on the scale from 0o to 90o of 2366

observations lumped in 5o or 10o intervals. The majority of the probability mass is

concentrated at 0o. Even though the majority of the probability mass is concentrated

between 0 − 15o similar to Bejo and Lang’s distribution approximately 14% of the

probability mass is located at higher grain angles which is descriptive of misaligned

strands and knots.

To select a probability mass function that will be used throughout all of the

simulations, 1,000 simulations were run using both grain angle distributions. The

Bejo and Lang distribution yielded a 7% larger mean modulus of elasticity. The

standard deviation of the modulus of elasticity is significantly smaller in the Bejo and

Lang distribution by 68%. In these simulations the neglect of knots and misaligned
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strands does not effect the overall mean modulus of elasticity, but have a significant

effect on standard deviation.

When comparing this data to the experimental results, the grain distribution

reported by Clouston gives a much better representation of the standard deviation of

the modulus of elasticity, which is the justification to why this distribution is used in

simulation of Parallel Strand Lumber members in these studies.

Figure 7.11. Bejo and Lang simulated and experimental grain angle pmf [3]

7.2.3 Study of Defects on the Modulus of Elasticity and Ultimate Stress

The effect defects have on the effective modulus of elasticity and strength of Par-

allel Strand Lumber is very important when determining factors of safety and quality

control on allowable materials. If the effect of defects can be quantified manufacturers

can determine safety limits and better predict the mean and standard deviation of

effective properties.

From the data generated for the effective modulus and ultimate stress the effect

of defects is investigated. Let θi be the grain angle of strand i. Strand i contains a
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Figure 7.12. Clouston experimental grain angle pmf [4]

defect if θi ≥ θdefect, where θdefect is a threshold angle defining a defect or knot. Here

θdefect = 90o and θi = 90o is attributed to a knot in the material.

To study the effect of the number of defects on the effective modulus and strength,

let φdefect be the fraction of strands satisfying θi > θdefect. Let φdefect range between

0 and 0.35. As this percentage of defects is increased the cumulative distribution

function which is used to sample the grain angle is adjusted by recalculating the

probability mass for each grain angle in the pmf given a known percentage of defects

and the original pmf. As the number of defects within the member is increased the

modulus of elasticity and ultimate stress decreases. As the percentage of defects is

increased the variability of the wood composite is also increased. To increase safety it

would be optimal to eliminate all defects within each Parallel Strand Lumber member,

but this is not very cost effective.

To control serviceability and safety an expression for φthreshold can be determined

from simulated or experimental data where φthreshold is a quality control value given

a desired threshold modulus of elasticity or ultimate stress. φthreshold is defined as

the mean minus n standard deviations. An example data set for the simulated mean
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effective modulus of elasticity of a 24 strand compression model with a percentage of

defects ranging from [0,35%] is shown in Figure 7.13. Figure 7.14 shows a data set

for the ultimate stress.

The standard deviation of the modulus of elasticity and ultimate stress are non

linear with an exponent >1 with linear decaying means. Linear fit lines are used for

both the mean and standard deviation because for this data a linear fit still yields a

good representation and is conservative.

To formulate an expression for φthreshold trend lines are applied to the mean and

standard deviation at each increment of percentage of defect which yields the equation

µ = µo − c1φthreshold, where µo is the mean when the percentage of defects is zero

and c1 is a linear trend constant. The equation for the standard deviation can be

similarly written as the equation σ = σo − c2φthreshold, where σo is the mean intercept

at X=0 and c2 is a linear trend constant. The trend line representing the mean minus

n standard deviations is written as µ− nσ = (µo − c1φthreshold)− n(σo − c2φthreshold).

The threshold modulus of elasticity or ultimate stress Ythreshold is then equal to the

expression

Ythreshold = µo + c1φthreshold − nσ − nc2φthreshold. (7.4)

By rearranging and solving for φthreshold yields

φthreshold =
Ythreshold − (µo − nσo)

c1 − nc2

. (7.5)

The 24 strand simulations yield the following model for the modulus of elasticity

φthreshold =
Ythreshold − (1630 ksi − n84.5 ksi)

−15 − n2.1
. (7.6)

Similarly, the 24 strand simulations of the ultimate stress yield
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Figure 7.13. 1000 - 24 strand cross-sections for different percentages of detects.
As the percentage of defects is increased the variability is increased and modulus of
elasticity decreases linearly.
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Figure 7.14. 1000 - 24 strand cross-sections for different percentages of detects. The
ultimate stress decreases linearly with an increasing percentage of defects although
the variation remains nearly constant.
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φthreshold =
Ythreshold − (7.34 ksi − n0.45 ksi)

−0.0592 + n0.0008
. (7.7)

When comparing Figures 7.13 and 7.14 the standard deviation of the ultimate

stress is constant and for the modulus of elasticity it is increasing as the percentage

of defects are increased. This cannot be exactly explained, but the reason for this

may be because the ultimate stress data for the sample size given is non-Gaussian.

7.3 Finite Element Studies

7.3.1 Finite Element Studies Overview

The finite element method is a powerful tool in research which will allow more

insight into the interaction between strands and verify assumptions made for the 2-D

computational model. ADINA v8.3.3 [1] is used as a finite element program. The

elements used are three dimensional 27 node elements. The material is modeled as

orthotropic and the failure model used is Tsai-Hill. Ten time steps were used in each

model where three of these time steps were in the linear-elastic regime and the rest

were in the plastic and post-plastic regime. The meshing used varied between models.

Each mesh is chosen based on a convergence study. Figures 7.15 and 7.16 show mesh

convergence studies for the largest compression and bending specimens used. As the

mesh size is increased the solutions do not vary by more than 1-3%.

The overall goal of these studies are to allow insight into aspects of modeling

that simplified methods could not observe, such as, the interaction of shear forces

or failure stress in bending. An in depth analysis is presented in the following two

sections with a comparison between the finite element method and simplified method

in the concluding remarks of this chapter.
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Figure 7.15. Mesh convergence study of the ultimate stress at failure for a uni-axial
compression specimen.
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Figure 7.16. Mesh convergence study of the center displacement for a three point
bending specimen.
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7.3.2 Compression Finite Element Studies

Two cross-sectional sizes which match previous simulation and experimental data

are used to estimate the modulus of elasticity and ultimate stress of a member of Par-

allel Strand Lumber in compression. The finite element model uses three dimensional

solid bodies aligned together to represent the strands in a cross-section outlined in

more detail in Chapter 2. These three-dimensional bodies allow for interactions that

are neglected in other models such as σz = τyz = τxz = 0, due to the simplification

to two-dimensions. The grain angle was modeled using orthotropic axis, which are

defined using the previously described deterministic value. This study also helps ver-

ify some simplification of other models by obtaining values of the shear and z-axis

stresses of given members. At failure the average stresses were σz = -0.0039 ksi, τyz =

-0.0038 ksi, and τxz = 0.033 ksi. These values, while very small, still have an influence

on the failure of the cross-section because the capacities in shear are very low.

Figures 7.17 and 7.18 show representations of solved cross-section models for the

1.10 in and 1.55 in models. In Figure 7.18 the top right corner of the cross-section has

a very weak strand which varies little to no load. In an actual cross-section this may

be where failure occurs first by delamination as the cross-section deforms. From this

you can see that the compression stress in the model varies spatially across the cross-

section and along the length of the model due to ending strands within the length of

a member. The compression stresses are estimated by calculating the reaction forces

from a uniform displacement applied at one end. Tables 7.1 and 7.2 show the results

of 30 finite element bodies for each cross-section size. Listed in Tables 7.3 and 7.4 are

a summary of the experimental results in comparison to the compression results from

the finite element and simplified 2-D compression models. The finite element model

captures the variation and mean of the modulus of elasticity and ultimate stress much

better than the simplified model. This is because the assumption of constant strain

across the cross-section and along the member is not valid. Figures 7.19 and 7.20
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show how the strain varies along the length and across a given section. Two locations

where strands are ending in the cross-section have a large influence on the local strain

around these locations. The strain on the side located near the boundary conditions

is nearly zero and on the side closer to the load application the strain is very high.

Even when ignoring these strands ending, the variation caused by strands having

different stiffness values causes significant variation through the cross-section. This

varying strain field results in more accurate results than the 2D simplified model.

The average shear forces in the body at failure of the finite element model are small

they still have an effect on the calculated effective properties. These shear forces are

τyz = -0.0038 ksi and τxz = 0.033 ksi. The shear strengths are very small, so even

these small shear forces still have an effect on the ultimate stress of the specimen.

The cross-correlation of the modulus of elasticity and ultimate stress is 0.20 for the

A specimens and 0.55 for the B specimens. This large difference may be due to the

relatively low number of specimens generated or possibly a size effect.

Although the finite element model yields very good results and more detailed

models in comparison to the simplified model the computational time is approximately

10-20x greater in the finite element model. As the size of the model gets longer more

elements are used per strand which changes aspects of the post processing commands.

As the size of the cross-section increases the displacement time stepping must also

be adjusted in such a way as to allow estimations of strain and stress in the linear

elastic range and plastic range.

Table 7.1. Finite element estimates of the stresses at failure for 30 - 1.10 in x 1.10
in x 3.25 in cross-sections and estimates of the modulus of elasticity.

stress-YY stress-XX stress-ZZ stress-YX stress-YZ stress-XZ

mean (ksi) -0.0059 7.36 -0.0068 -0.0006 -0.0008 0.0023
std. dev. (ksi) 0.0048 0.60 0.0039 0.0071 0.0038 0.033
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Table 7.2. Finite element estimates of the stresses at failure for 30 - 1.55 in x 1.55
in x 5.00 in cross-sections and estimates of the modulus of elasticity.

stress-YY stress-XX stress-ZZ stress-YX stress-YZ stress-XZ

mean (ksi) -0.0006 7.39 -0.0019 0.0005 -0.0003 0.0023
std. dev. (ksi) 0.0036 0.40 0.0032 0.0078 0.0014 0.016

Table 7.3. Finite element estimates of the modulus of elasticity.

FE Group A FE Group B

mean (ksi) 1780 1890
std. dev. (ksi) 231 217

Table 7.4. Finite element observations of the ultimate compressive strength for
specimen groups A and B with a comparison to the experimental and simplified
model data.

FE A FE B virt. A virt. B exp. A exp. B

mean (ksi) 7.36 7.39 7.19 7.18 7.71 8.97
std. dev. (ksi) 0.60 0.40 0.20 0.25 1.09 1.02

7.3.3 Bending Finite Element Studies

Two specimen sizes, where one of the specimen sizes matches experimental data,

are chosen to observe the bending modulus of elasticity. Also discussed in this section

are ways to gather data on the bending stress at failure of a cross-section. The

bending tests are performed in accordance to Chapter 2. Three dimensional solid

bodies are used to represent strands. Randomly distributed strand lengths could not

be implemented where they were in the compression finite element studies due to the
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Figure 7.17. Sample finite element 1.10 in x 1.10 in x 3.25 in body, subject to
uni-axial compression.

Figure 7.18. Sample finite element 1.55 in x 1.55 in x 5.00 in body. The top right
corner of the cross-section has a very weak strand which carries little to no load.
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Figure 7.19. Sample finite element 1.55 in x 1.55 in x 5.00 in section. The strain
field is in the elastic range which shows that the assumption in the 2D model of
constant strain is not valid. The strain at certain locations in the cross-section can
vary significantly depending on the constitutive elastic properties. A location where
a strand ends and a new strand begins is shown. This causes a localized strain to be
observed.

Figure 7.20. A second location where a strand ends and a new strand begins is
shown. This causes a localized strain to be observed.
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Table 7.5. Finite element observations of the modulus of elasticity in compression
for specimen groups A and B with a comparison to the experimental and simplified
model data.

FE A FE B virt. A virt. B exp. A exp. B

mean (ksi) 1780 1890 1580 1573 1840 1860
std. dev. (ksi) 231 217 174 120 300 400

placing of loads and boundary conditions so the strand lengths are set to match the

overall model length. The reasons the strand length is set equal to the model length

are complications arose in the placing of the load. The load needed to be applied

at subdivisions in the center of the member. Lengthwise variability made it nearly

impossible and computationally expensive to accurately divide strands so there would

be a subdivision located exactly at the center line in the bending member. Also, the

introduction of having random lengths associated with strands and extra subdivisions

would cause the node numbering system to change. The nodes where the deflections

are measured to calculate the modulus of elasticity are taken at a location at the center

line of the bending specimen on the bottom face. If more strands were introduced

the location of these nodes would have to be determined via data post processing

before results could be post processed. This drastically increases the computational

time and expenses in comparison to the current finite element model where these

node locations can be easily read by hand once off an initial model and inputted into

the program to simulate any number of cross-sections. Also, due to computational

limits on the amount of physical memory available the only cross-sections that could

be readily calculated are short bending specimens with a small cross-section to limit

shear deformations. Large cross-sections such as the 5.25 in x 5.25 in x 96 in could

not be calculated because the amount of memory needed exceeded the capacity of

the server used to run these simulations.

Two specimen sizes, one, a 24 strand - 1.55 in x 1.55 in x 15 in section and the

other, a 40 strand - 2 in x 2 in x 38 in specimen, are simulated using the above

91



www.manaraa.com

finite element algorithms. The number of observations is 30 for each cross-sectional

size with the results shown in Table 7.6 with a comparison to the experimental data.

Figures 7.21 and 7.22 show progressive yielding of a section and the corresponding

increasing stress. Observations of this yielding indicate it is very subjective to when

a cross-section actually fails, which is only evident in computational models. In each

of these four figures the load is increasing by a constant amount. The results of

these simulations coincide with experimental and previous simulated data using the

simplified method. The finite element model yields a similar estimate of the bending

modulus of elasticity compared to the simplified simulation method when compared to

the experimental 1.55 in x 1.55 in cross-sections. The simplified method yields much

better estimations of the variability. This is because the simplified method allows

variable strain lengths to be used. Also, yielding and high stresses occur at the load

application because loads are applied at nodes which is unrealistic and causes large

stress concentrations. The second set of finite element simulations were performed to

gather another estimate of the variation and modulus of elasticity when increasing

the cross-sectional size. The modulus of elasticity and variation are very similar in

both cases, although the variation is only based on 30 observations compared to 1000

of the simplified method. The variation is similar to the experimental in all cases,

where the difference in variation is most likely due to the neglect of within strand

variation and the inability to implement strands of different lengths.

Observations of the load at which failure initiates in these models is very subjec-

tive. The simulations are designed to limit the number of time steps. The objective

of the bending model is to gather several elastic measurements and then observe the

progressive yielding to failure of the cross-section. Due to the cross-sections having

random elastic and strength properties failure occurred at different stresses for every

cross-section. Strands with a high grain angle would fail very soon under the loading

when the cross-section would still behave elastically. Current strength models in the
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finite element software are very good for strands in compression. In bending some

strands experience tensile stress, some experience compression stresses, and strands

located near the neutral axis experience both stresses [4]. Due to the mixed stress

conditions a new failure criteria must be developed and implemented to get the load

at which failure occurs in bending.

Table 7.6. Bending test results. The script s stands for the short bending specimens
which matched the experimental length of 8 ft. The l script denotes the long 640 ft
samples.

FE A FE B sim. A-s sim. A-l exp. A

mean (ksi) 1620 1655 1572 1572 1648
std. dev. (ksi) 97.1 97.5 94 111 150

7.3.4 Finite Element Conclusions and Recommendations

Finite element solutions are powerful tools to observe the response of Parallel

Strand Lumber in bending and compression. These methods are computationally

expensive, but provide much insight into interactions a simplified method neglects.

In compression the finite element model shows the strain varies within the cross-

section and along the length of a member which yields much better results for the

variability and ultimate compressive strength in comparison to simplified 2D models.

The finite element model verifies the assumption the shearing stresses and through-

thickness stresses are negligible in uni-axial compression. Even with some twisting

and bending of these cross-sections, which was also noticed in the experiments, the

resulting forces are very small but can not be ignored. Overall, the results of the

finite element model are significantly more accurate and more representative of an

actual model in comparison to a simplified models described in previous chapters.
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Figure 7.21. Progressive yielding of a 40 strand 2 in x 2 in cross-section. The time
increases from bottom to top.

Figure 7.22. The resulting stresses from the progressive yielding of a 40 strand 2 in
x 2 in cross-section. The time increases from bottom to top.

94



www.manaraa.com

The bending models are significantly more computationally expensive in compar-

ison to short and small compression specimens because the members total length

and size are significantly longer and larger. It is also very hard to implement many

features of Parallel Strand Lumber, such as, length-wise variations or proper frac-

ture mechanics models in the bending model. In comparison to the finite element

model, the simplified models provide much faster and easier to implement solutions

to a bending problem. Also, large specimens, such as those that would be used for

commercial products, require more sophisticated finite element methods to reduce

the amount of time it would take to solve. The simplified models can take any cross-

sectional size and length as input and provide a fast and more detailed solution, such

as, providing length-wise variability measurements.

Overall, the finite element method is a very accurate and easy way to gather

observations of the compressive modulus of elasticity and ultimate stress at failure.

The simplified models though provide easy to implement and accurate results in

bending where the finite element method is very computationally expensive and lacks

many actual features of Parallel Strand Lumber.
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CHAPTER 8

CONCLUSIONS

Three point bending tests at a series of locations along the length of Parallel

Strand Lumber of two different size cross-sections and a series of compression tests of

a divided longer member provides measurements of a spatially varying modulus and

ultimate stress field. These experimental results show that the variation of Parallel

Strand Lumber is approximately 50% lower then that of dimension lumber due to the

averaging of material properties for nominally sized members.

Results indicate that lumber specimens in typical machined lengths and cross-

sections are not long enough to provide a reliable estimation of the spatial variation of

material properties unless there is a large enough sampling pool to estimate ensemble

statistics. Sample estimates of the correlation length for the modulus of elasticity in

bending and compression and the ultimate compressive strength are of the order ten

inches. By taking ensemble estimates of these statistics the correlation length is 56

in.

Models are developed which rely on a simplified treatment of the Parallel Strand

Lumber mesostructure. Finite element models are also created to verify and com-

pare to these simplified models. Both models include uncertainty in the orthotropic

constitutive elastic constants, grain angle, strand length, and failure criteria. The

simplified models provide samples of the elastic modulus in bending and compression

and the ultimate stress in compression which are analogous to the experimental data

through applying a filtering process, which is similar to the averaging of test, to the
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unfiltered processes. The filtered process is the result of the averaging of material

properties between two support locations in a three point bending test.

The simplified computational model is verified by comparing first and second mo-

ment properties to the experimental results. These models perform well in comparison

to the three point bending results with a slight under prediction of the variation of

the modulus process. This under prediction is from sources of experimental error

and simplification of some uncertainty in the modeling of the mesostructure. The

compressive modulus of elasticity does not perform well in comparison to the exper-

imental data. This difference is due to testing methods which do not perform well

with Parallel Strand Lumber. The strain is measured from an extensometer, which

is attached to the side of the member. This extensometer did not yield very accurate

results due to debonding and bending of the outer strands which caused the exten-

someter to yield false readings. The method of extracting the modulus of elasticity

from the stress-strain curves also introduced significant operator error.

The model of the ultimate stress in compression is in good agreement with ex-

perimental data with some under prediction of the variation of the ultimate stress

field. The finite element model is in better agreement by capturing the variation of

the modulus of elasticity and ultimate stress much better then the simplified models.

For the 2-D simplified models constant strain was assumed throughout the member.

The finite element model showed that the strain varied significantly within the cross-

section and along the length of the member. Due to this simplification not being

valid the finite element model yielded much better results then the simplified models.

Aside, the simplified model’s assumption of neglecting shear and through-thickness

forces was observed in the finite element results. The prediction of variation and

mean of these effective properties agreed with experimental data with slight under

predictions due to the errors mentioned above. The three point bending finite element

models had slightly worse agreement then the simplified method results. The three
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point bending finite element model is very hard to implement all the key features

of Parallel Strand Lumber, such as strand length variation. This model is also very

computationally expensive and not recommended. The simplified three point bend-

ing model is much faster, easier to implement, more user-friendly, and yields better

estimations of the mean and variation of the modulus of elasticity.

For the simplified bending model when there are approximately 10-50 strands in

a cross-section with a short test span the unfiltered and filtered modulus of elasticity

processes converge. When there are more than approximately 100 strands in a cross-

section there is significant averaging where bending tests do not provide accurate

measurements of the variation of the elastic modulus process.

The distribution of the compression modulus of elasticity, bending modulus of

elasticity, and ultimate stress are Gaussian when there are more than approximately

15 strands in the cross-section. If there are less than 15 strands in the cross-section

these processes are non-Gaussian because of the small sample size of strands. The

modulus of elasticity in these cross-sections is independent of the number of strands

in the cross-section. The variation of the effective properties scales inversely with the

number of strands. The auto covariance can be modeled as a linear decaying process

to zero.

Additional studies suggest that finite element method should be used to model the

compression specimens because they provide better estimations, otherwise, more de-

velopment of the simplified model is needed. The simplified model does perform very

well for three point bending specimens where the finite element is computationally

expensive and very hard to implement. The simplified models in both compression

and bending provides fast, accurate, user-friendly estimations of the spatially vary-

ing processes, where as the finite element models can only provide point statistics of

one sample. The finite element models are also not user-friendly taking significant

time to calibrate meshing, time stepping, and the post processing of data. Overall,
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the simplified method is proven to provide very easy and accurate estimations of the

statistics of Parallel Strand Lumber.

These additional studies also give details on what type of distributions should be

used for the grain angle. Two grain angle distributions, one a truncated Gaussian

distribution [3], and the other an empirical distribution for observations are presented

[4]. A truncated Gaussian distribution does not capture the effect knots or misaligned

strands have on the cross-section. These defects drastically reduce the modulus of

elasticity and strength of a cross-section. Also, this limits the amount of variation

of Parallel Strand Lumber, which is inherently much greater when comparing the

computational estimates to experimental data.

In addition to these findings a defect sensitivity parameter study is performed.

The modulus of elasticity and ultimate stress of cross-sections containing a varying

percentage of defects, or strands which have a grain angle equal to 90o are estimated.

This gives insight into code based design on factory limits on what types of materials

are used in the making of Parallel Strand Lumber.

The objective of this master’s thesis research is to successfully implement easy

and accurate simplified models that can predict important characteristics and prop-

erties such as the ultimate stress or modulus of elasticity of compression and bending

members. These models then can be used to give estimations of the effective proper-

ties of new composites, which may reduce or limit the number of expensive and time

consuming experimental tests needed.

99



www.manaraa.com

BIBLIOGRAPHY

[1] Automatic dynamic incremental nonlinear analysis. Version 8.3.3. 1994-2004
ADINA R & D Inc.

[2] ASTM. Standard methods of statis tests of lumber in structural sizes. American
Society for Testing and Materials D 198–05.

[3] Bejo, L., and Lang, E. Simulation based modeling of the elastic properties of
structural composite lumber. vol. 36, pp. 395–410.

[4] Clouston, P. Characterization and strength modeling of parallel strand lumber.
Holzforschung 61 (2006), 392–399.

[5] Clouston, P., and Lam, F. Computational modeling of strand-based wood com-
posites. ASCE Journal of Engineering Mechanics 127 (2001), 884—851.

[6] Clouston, P., and Lam, F. A stochastic plasticity approach to strength modeling
of strand-based wood composites. Composites Science and Technology 62 (2002),
1381–1395.

[7] Ekevad, M. Method to compute fiber directions in wood from computed tomog-
raphy images. Journal of Wood Science 50 (2004), 41–46.

[8] Green, D., Winandy, J., and Kretschmann, D. Wood handbook. Forest Products
Laboratory, Madison, WI.

[9] Hu, Y., and Wang, F. Nondestructive test and prediction of modulus of elasticity
of veneer-overlaid particleboard composite. Wood Science and Technology 39

(2005), 439–447.

[10] Lam, F., and Varoglu, E. Variation of tensile strength along the length of lumber
part 1: Experimental. Wood Science and Technology 25 (1991), 351–359.

[11] Lam, F., and Varoglu, E. Variation of tensile strength along the length of lumber
part 2: Model development and verification. Wood Science and Technology 25

(1991), 449–458.

[12] Liu, Y., and Lee, A. Selected properties of parallel strand lumber made from
southern pine and yellow-poplar. Holzforschung 57 (2003).

100


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	January 2008

	Measurement and Computational Modeling of the Mechanical Properties of Parallel Strand Lumber
	Russell S. Winans

	Measurement and Computational Modeling of the Mechanical Properties of Parallel Strand Lumber

